【以下内容部分转自 http://www.lizhijin.com/view.php/Scholar/207.html 】
A.判断P(x)是何种分布的方法:
首先对P(X)取对数---ln(x),然后观察x的形式。如果ln(x)是x的二次函数,那么P(x)就是Guassian;如果ln(x)是x和lnx的线性组合函数,那么P(x)就是Gamma。具体的细节后续再学习补充。
B.学习PRML 预备知识:
- p(X|Y)的记法:注意|右边的Y既可以表示随机变量(已经取定了某具体值),也可以表示普通的非随机变量。这样我们可以在最大似然估计和 Bayes方法间方便的“切换”,而不会让符号记法影响我们的表述。例如,考虑具有确定但未知参数μ,Σ的高斯分布p(x),可以记为p(x|μ,Σ); 若按照Bayes学派观点,可以将μ和Σ也看作随机变量,x的分布就能记为随机变量μ,Σ取定某值后的条件分布p(x|μ,Σ)——统一的记法。
- k取1分布/多项式分布(Multinomial):考虑取3个离散值的随机变量x ~ p(x)。这个看似很平庸的分布...就是所谓的k 取1分布或多项式分布。一般我们习惯的把它记为p(x_i) = u_i, i = 1,2,3,且u_1 + u_2 + u_3 = 1. 但在有 些数学推导中,将它记为指数形式会更方便些.将x看作3维的随机向量,各分量是“互斥”的,即它只能取(1,0,0),(0,1,0),(0,0,1)三 组值。于是可将分布重新记为 p(x) = (u_1^x_1)*(u_2^x_2)*(u_3^x_3).一般的k维情况依次类推。具体参[Bishop]的2.2节.
- 共轭先验分布(Conjugate Prior):考虑某概率密度函数,要估计其中的参数t。按照Bayes学派的观点,参数 t ~ p(t).我们有p(t|X) ∝ p(X|t)p(t),这个式子说:在没有做任何观测时,我们对t的知识用先验分布p(t)表示。当观察到X 后,就通过该式将先验概率p(t)更新(计算)为后验概率p(t|X),使我们对t的知识增加。仔细观察,若p(t)与p(X|t)有相同的函数形式,那 么后验概率p(t|X)就与先验概率p(t)有相同的函数形式——这使得t的后验概率与先验概率具有相同的表达式,只是参数被更新了! 更妙的是,本次后 验概率可以作为下次观测时的先验概率,于是当继续进行观测X_2,X_3...时,只是不断的在更新先验概率p(t)的参数,p(t)的函数形式不变。具 体参见[Bishop]的2.2节。
这也是Bayes学派饱受批评的地方:先验概率的选取有时只是方便数学推导,而非准确的反映我们的先验知识。
- Dirichlet分布:现在我们可以说,Dirichlet分布就是k取1分布的Conjugate Prior。若k维随机向量 θ ~ Drichlet分布,则θ的k个分量θ_1,θ_2,...,θ_k都取连续的非负值,且 θ_1 + θ_2 + ... + θ_k = 1。Dirichlet分布的具体表达式参见[Bishop]的2.2节。
- Simplex:考虑2维的例子:以(0,1)与(1,0)为端点的线段就是simplex。考虑3维的例子,以(0,0,1), (0,1,0),(0,0,1)为端点的三角形内部就是simplex。更高维的情况可依次类推。考虑θ ~ Drichlet分布。注意到θ的k个分量 θ_1,θ_2,...,θ_k都取连续的非负值,且θ_1 + θ_2 + ... + θ_k = 1,可知Dirichlet分布的定义域是一个 simplex.这也就是原文中Figure 2那个三角形的含义(k = 3的示意图,让这个simplex三角形平躺在水平面上)。参见 [Bishop]的2.2节
- Graphical Models. 就是用图来表示随机变量中的依赖关系。这个tutorial一google一大把。建议参考 [Bishop]的8.1节,了解几个符号(空心圆圈——隐藏(latent)变量,实心圆圈——观察(observed)变量,方框——重复次数)就足 够看懂原文中的Figure 1和Figure 3了。最多再看看[Bishop]的8.2节
- EM:关于这个的tutorial很多,但我觉得[Bishop]的9.2节是数学处理最为简洁,最容易看懂的(有个tutorial在关键 的几步中用了大量∑和∏,让人抓狂) 。另外[Bishop]的9.4节也值得看,为理解其它内容如variational inference有好处。
- Variational Inference: 就是计算后验概率的近似方法。考虑随机变量{X,Z},其中X是观察变 量,Z = {Z_1,Z_2}是隐藏变量。用EM法或做Bayes推理的关键一步,就是要求后验概率p(Z|X).不巧的是,在一些复杂问题中 p(Z|X)没有解析表达式,需要近似求解.相关的方法很多,一种经常使用的是基于可分解(factorization)假设的方 法:p(Z|X) ≈ p(Z_1|X)p(Z_2|X)——就是说强行假设Z_1和Z_2条件独立——然后进行后续推导。 这一假设当然会产生误差,考虑二维高斯分布p(Z|X) = p(Z_1,Z_2|X),Z_1与Z_2不独立,所以p(Z_1,Z_2|X)的 等高图是同心椭圆,椭圆可任意倾斜(例如,若Z_1与Z_2的线性相关系数是1,则椭圆倾斜45°)。现简记 p(Z_1|X) = q_1(Z_1), p(Z_2|X) = q_2(Z_2),我们想改变q_1与q_2,用q_1*q_2去拟合 p(Z_1,Z_2|X).但无论如何改变q_1与q_2的形式,q_1*q_2的椭圆等高线都是长轴、短轴分别与Z_1轴、Z_2轴平行!不过,合适的 q_1与q_2保证q_1*q_2与p(Z|X)的峰值点重合,一般这就足以解决实际问题了。详细讲解可以参见[Bishop]的第10章。也可参考 [Winn]的1.8节。