Poj 2152 Fire (DP_树形DP)

题目链接:http://poj.org/problem?id=2152

题目大意:给定n个节点组成的树,树有边权.现在要在一些点上建立消防站,每个点建站都有个cost[i],如果不在当前的点上建站,也要依赖其他的消防站,并且距离不超过limit[i]。求符合上述条件的最小费用建站方案。n <= 1000.

解题思路:复杂度为O(n^2)的树形DP.因为要依赖其他站点,所以不仅仅只从子树中获取信息,也可能从父亲结点,兄弟结点获取信息,所以在计算每个点时首先想到要枚举,因为n特别小,允许我们枚举。设dp[i][j]表示i点及其子树都符合情况下i点依赖j点的最小花费,有了这个似乎还不够,再开个一维数组best,best[i]表示以i为根的子树符合题目要求的最小花费。这样状态转移方程就是dp[i][j] = cost[j] + sum(min(dp[k][j]-cost[j],best[k])) (k为i的子节点,j为我们枚举的n个点),因为i的每个子节点可以和i一样依赖j结点,那么花费是dp[k][j]-cost[j],或者依赖以k为根的树中的某点,花费是best[k],最后再加上cost[j],因为要在j结点建站所以要增加花费。

    你问我怎么想到的,我不会告诉你我看了陈启峰的论文。


测试数据:

5
5
1 1 1 1 1
1 1 1 1 1
1 2 1
2 3 1
3 4 1
4 5 1

5
1 1 1 1 1
2 1 1 1 2
1 2 1
2 3 1
3 4 1
4 5 1

5
1 1 3 1 1
2 1 1 1 2
1 2 1
2 3 1
3 4 1
4 5 1

4
2 1 1 1
3 4 3 2
1 2 3
1 3 3
1 4 2

4
4 1 1 1
3 4 3 2
1 2 3
1 3 3
1 4 2

代码:
#include <stdio.h>
#include <vector>
#include <string.h>
using namespace std;
#define MAX 1100
#define INF 2147483647
#define min(a,b) (a)<(b)?(a):(b)
#define max(a,b) (a)>(b)?(a):(b)


struct node {

    int v,len;
}now;
vector<node> tree[MAX];
int n,cur,best[MAX],dp[MAX][MAX];   //best[i]表示以i为根的子树的最小花费,dp[i][j]表示i依赖j的花费
int dist[MAX][MAX],limit[MAX],cost[MAX];


void Initial() {
    //初始化
    int i,j;
    for (i = 0; i <= n; ++i)
        tree[i].clear(),best[i] = INF;
    for (i = 1; i <= n; ++i)
        for (j = 1; j <= n; ++j)
            dp[i][j] = INF;
}
void CountDist(int s,int pa,int dis){
    //先搜一次记录每个点到其他点的距离
    dist[cur][s] = dis;
    for (int i = 0; i < tree[s].size(); ++i) {

        int v = tree[s][i].v;
        int len = tree[s][i].len;
        if (v == pa) continue;
        CountDist(v,s,dis+len);
    }
}
void Tree_DP(int s,int pa) {

    int i,j,k;
    for (i = 0; i < tree[s].size(); ++i)
        if (tree[s][i].v != pa)
            Tree_DP(tree[s][i].v,s);


    for (i = 1; i <= n; ++i)                //枚举
        if (dist[s][i] <= limit[s]) {

            dp[s][i] = cost[i];
            for (j = 0; j < tree[s].size(); ++j) {
                //把子树信息汇总到当前点
                int v = tree[s][j].v;
                if (v == pa) continue;
                dp[s][i] += min(dp[v][i]-cost[i],best[v]);
            }
            best[s] = min(best[s],dp[s][i]);//状态转移方程,结果存储在best中
        }
}


int main()
{
    int i,j,k,a,b,c,t;


    scanf("%d",&t);
    while (t--) {

        scanf("%d",&n);
        Initial();
        for (i = 1; i <= n; ++i)
            scanf("%d",&cost[i]);
        for (i = 1; i <= n; ++i)
            scanf("%d",&limit[i]);
        for (i = 1; i < n; ++i) {

            scanf("%d%d%d",&a,&b,&c);
            now.v = b,now.len = c;
            tree[a].push_back(now);
            now.v = a,now.len = c;
            tree[b].push_back(now);
        }


        for (i = 1; i <= n; ++i)
            cur = i,CountDist(i,0,0);
        Tree_DP(1,0);
        printf("%d\n",best[1]);
    }
}

本文ZeroClock原创,但可以转载,因为我们是兄弟。
展开阅读全文

没有更多推荐了,返回首页