写一个程序,求两个正整数的最大公约数。如果两个正整数都很大,有什么简单的算法吗?
例如:给定两个数1 100 100 210 001,120 200 021,求出其最大公约数。
解法一:最容易想到的就是欧几里得算法,也就是辗转相除法:gcd(a,b)=gcd(b,a%b)
int gcd(int a,int b)
{
if(a<b)
return gcd(b,a);
if(b==0)
return a;
else
return gcd(b,a%b);
}
上面的解法用到了取模运算,对于大整数开销比较大。
解法二:考虑gcd(a,b)|a,gcd(a,b)|b,所以gcd(a,b)|(a-b)
从而gcd(a,b)=gcd(a-b,b)。
int gcd(int a,int b)
{
if(a<b)
return gcd(b,a);
if(b==0)
return a;
else
return gcd(a-b,b);
}
这个方法是没用到除法,但是迭代的次数比解法一多了不少。
解法三:若a=kx,b=ky,则gcd(a,b)=k*gcd(x,y),若a=px,b%p!=0,这里p是素数,则gcd(a=px,b)=gcd(x,b),由此可以知道2为素数,
如果a,b是2的倍数则gcd(a,b)=2*gcd(a/2,b/2);
如果a是2的倍数,b不是,则gcd(a,b)=gcd(a/2,b);
如果a不是2的倍数,b是2的倍数,则gcd(a,b)=gcd(a,b/2);
否则,gcd(a,b)=gcd(a-b,b),在重复上面的做法。
int gcd(int a,int b)
{
if(a<b)
return gcd(b,a);
if(b==0)
return a;
else
{
if(a%2==0)
{
if(b%2==0)
return (gcd(a>>1,b>>1)<<1);
else
return gcd(a>>1,b);
}
else
{
if(b%2==0)
return gcd(a,b>>1);
else
return gcd(a-b,b);
}
}
}
该方法就是一些移位运算和减法,提高了效率。