批量梯度下降与随机梯度下降之间的关系

首先来看一个最简单的例子,即线性回归。

与之前一样,我们从代价函数(cost function)开始。

1_CSocAhQwk1xuncdV7aRdmA

线性回归复习完毕。

所以,梯度下降算法是什么?

1_7EFYKfICK48B5jCxgYHVLQ

上面算法的意思是说,为了执行梯度下降,我们就要计算代价函数 J 的梯度。为了计算代价函数的梯度,我们要对所有样本的代价进行求和(黄色圆圈)。也就是说,如果有300万个样本,我们每计算一次梯度就要循环计算300万次。

下面是Python代码:

1def gradientDescent(X, y, theta, alpha, num_iters):
2    """
3       执行梯度下降 
4    """ 
5    m = y.size # 训练样本的数量
6    for i in range(num_iters):
7        y_hat = np.dot(X, theta)
8        theta = theta - alpha * (1.0/m) * np.dot(X.T, y_hat-y)
9    return theta

看到上面的 np.dot(X.T, y_hat-y) 了吗?这是 “循环(求和)300万个样本” 的矢量化版本。

等等….这只是向最小化迈进了一步,我们真的要每计算一次代价就要计算300万次吗?

是的,如果使用梯度下降的话。

但如果使用随机梯度(Stochastic Gradient Descent, SGD)下降,就没有必要计算这么多次!

1_7LbtloKtsBZW1P0DmR4UDA

基本上,在SGD中,我们在每次迭代时只使用 1 个样本的梯度,用它来代替所有样本的梯度之和。

 1def SGD(f, theta0, alpha, num_iters):
 2    """ 
 3       参数:
 4       f  - 要优化的函数,它需要一个参数
 5            并产生两个输出,一个代价和相对于参数的梯度
 6       theta0 - 开始 SGD 的初始值
 7       num_iters  - SGD 的总迭代次数
 8       返回:
 9       theta  -  SGD 结束后的参数值
10    """ 
11    start_iter = 0
12    theta= theta0
13    for iter in xrange(start_iter + 1, num_iters + 1):
14        _, grad = f(theta)
15        theta = theta - (alpha * grad) # 没有使用点积
16    return theta

这是一个非常简单的算法!

有几点注意事项:

  1. 在SGD中,在循环之前,您需要随机更改训练样本。

  2. 在SGD中,因为它一次只使用一个样本,所以它的最小值路径比批量梯度的路径更嘈杂(更随机)。但是没关系,因为我们对路径漠不关心,只要它给我们最小的值和更短的训练时间。

  3. 小批量梯度下降在每次迭代时使用n个样本点(而不是SGD中的1个样本)。

原文:https://towardsdatascience.com/difference-between-batch-gradient-descent-and-stochastic-gradient-descent-1187f1291aa1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值