在默认读者已经有一定的数学基础和算法基础的前提下,废话少说,直接上干货。
1,Batch gradient descent
最外层的Repeat until convergence,就是可以设置收敛条件的。
下面一点代码来解释这个公式:
这里设置循环100000代,在这里默认程序跑到100000代就收敛了,并且预测的和实际的之要大于0.000000001。
看j循环:q[j]代表权重,从代码中可以看到,四个样本先计算差值的和之后再更新权重q[j]。这是批量梯度下降和随机梯度下降的不同之处。
2,Stochastic gradient descent
随机梯度下降是用每一个样本来更新权重参数一次。
接着是代码实现