随机梯度下降和批量梯度下降的原理和区别

本文深入探讨了批量梯度下降(Batch Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)的原理,通过代码实例展示了两者在更新权重时的区别。批量梯度下降依赖所有样本的平均梯度,而随机梯度下降每次迭代仅使用一个样本,这可能导致更快的收敛。在实际应用中,选择哪种方法取决于问题的具体需求和资源限制。
摘要由CSDN通过智能技术生成

在默认读者已经有一定的数学基础和算法基础的前提下,废话少说,直接上干货。

1,Batch gradient descent


最外层的Repeat until convergence,就是可以设置收敛条件的。

下面一点代码来解释这个公式:

这里设置循环100000代,在这里默认程序跑到100000代就收敛了,并且预测的和实际的之要大于0.000000001。

看j循环:q[j]代表权重,从代码中可以看到,四个样本先计算差值的和之后再更新权重q[j]。这是批量梯度下降和随机梯度下降的不同之处。


2,Stochastic gradient descent

随机梯度下降是用每一个样本来更新权重参数一次。

接着是代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值