问题陈述
通过使用 Kaggle 的 MRI 数据集的图像分割来预测和定位脑肿瘤。
将本文分为两个部分,因为我们将针对相同的数据集,不同的任务训练两个深度学习模型。
这部分的模型是一个分类模型,它会从 MRI 图像中检测肿瘤,然后如果存在肿瘤,我们将在本系列的下一部分中进一步定位有肿瘤的大脑部分。
先决条件
深度学习
让我们入使用 python 的实现部分。
数据集:https : //www.kaggle.com/mateuszbuda/lgg-mri-segmentation
让我们从导入所需的库开始。
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import cv2
from skimage import io
import tensorflow as tf
from tensorflow.python.keras import Sequential
from tensorflow.keras import layers, optimizers
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from tensorflow.keras import backend as K
from sklearn.preprocessing import StandardScaler
%matplotlib inline
将数据集的 CSV 文件转换为数据帧,对其进行特定的操作。
# data containing path to Brain MRI and their corresponding mask
brain_df = pd.read_csv('/Healthcare AI Datasets/Brain_MRI/data_mask.csv')
查看数据帧详细信息。
brain_df.info()
brain_df.head(5)
患者 ID:每条记录的患者 ID(dtype:对象)
图像路径:MRI 图像的路径(dtype:对象)
蒙版路径:对应图像蒙版的路径(dtype:Object)
蒙版:有两个值:0 和 1,具体取决于蒙版的图像。(数据类型:int64)
计算每个类的值。
brain_df['mask'].value_counts()