使用深度学习进行脑肿瘤检测和定位:第 1 部分

本文介绍如何利用Kaggle上的MRI数据集,通过深度学习进行脑肿瘤的检测。首先阐述问题,然后介绍数据集和预处理步骤,包括数据框构建、图像与蒙版的可视化。接着,采用ImageDataGenerator进行数据扩充,并使用ResNet50模型进行迁移学习,通过添加额外层进行训练。最后,训练模型,应用提前停止和模型检查点回调以优化性能。
摘要由CSDN通过智能技术生成

问题陈述

通过使用 Kaggle 的 MRI 数据集的图像分割来预测和定位脑肿瘤。

将本文分为两个部分,因为我们将针对相同的数据集,不同的任务训练两个深度学习模型。

这部分的模型是一个分类模型,它会从 MRI 图像中检测肿瘤,然后如果存在肿瘤,我们将在本系列的下一部分中进一步定位有肿瘤的大脑部分。

先决条件

深度学习

让我们入使用 python 的实现部分。

数据集:https : //www.kaggle.com/mateuszbuda/lgg-mri-segmentation

  • 让我们从导入所需的库开始。

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import cv2
from skimage import io
import tensorflow as tf
from tensorflow.python.keras import Sequential
from tensorflow.keras import layers, optimizers
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from tensorflow.keras import backend as K
from sklearn.preprocessing import StandardScaler
%matplotlib inline

  • 将数据集的 CSV 文件转换为数据帧,对其进行特定的操作。

# data containing path to Brain MRI and their corresponding mask
brain_df = pd.read_csv('/Healthcare AI Datasets/Brain_MRI/data_mask.csv')

  • 查看数据帧详细信息。

brain_df.info()

数据集信息 |  脑肿瘤检测
brain_df.head(5)

  1. 患者 ID:每条记录的患者 ID(dtype:对象)

  2. 图像路径:MRI 图像的路径(dtype:对象)

  3. 蒙版路径:对应图像蒙版的路径(dtype:Object)

  4. 蒙版:有两个值:0 和 1,具体取决于蒙版的图像。(数据类型:int64)

  • 计算每个类的值。

brain_df['mask'].value_counts()

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值