使用 TensorFlow 进行图像分类:开发数据管道(第1部分)

本文详述如何使用 TensorFlow 数据集构建数据管道,以进行二进制图像分类。内容涵盖数据提取、转换、加载(ETL),以及在 Horses-or-Human 数据集上的实践。通过 TensorFlow 数据集实现预处理自动化,降低过度拟合风险。
摘要由CSDN通过智能技术生成

介绍

在本文中,我们将讨论使用 Tensorflow 进行二进制图像分类,我们将使用 TensorFlow 数据集(TensorFlow 社区提供给我们的数据管道)。

本文分为两个部分作为一个完整的指南,每个部分都足以让你理解其中提到的概念,遵循这两个部分并没有压力。

第1部分讨论数据管道和模型训练

第2部分将在第 1 部分之后进行选择,并在流数据上使用正则化和数据增强来克服过度拟合。

目录

  • 数据管道

  • 提取、转换、加载 (ETL)

  • Tensorflow 数据集

  • Horses-or-Human 数据集

数据管道

这个术语仅意味着在原始输入数据和我们从中得到的输出数据之间包含了一系列步骤/操作。如果我打算在使用数据之前对其进行一些预处理,则可以在应用预处理后使用数据管道来获取数据。

更明确地说,将数据管道视为一种自动化机制,以避免手动固定的预处理步骤,并让数据通过数据管道中定义的步骤自动转换。

提取、转换、加载 (ETL)

尽管涉及更多复杂性,但这个高级词汇组合已经告诉我们数据管道的功能。作为初学者,了解就足够了。

提取意味着从数据源中检索数据。

转换意味着应用特定数据管道中涉及的所有步骤,并将该数据转换为你需要的数据。

加载意味着从转换中获取输出数据并将该数据用于模型以开始训练或推理。

TensorFlow 数据集

这是 TensorFlow 社区为我们提供的数据管道的名称,我们可以在我们的 TensorFlow 代码中使用它,并制作更强大和生产就绪的机器学习或深度学习模型。

Horses-or-Human 数据集

这是我们将在代码中使用的数据集。该数据集由 Laurence Moroney 创建,包含分布在两个类(马和人类)之间的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值