前言
迭代加深算法是 dfs 的一种变形 ,能解决 dfs 时间复杂度高的坏处 , 迭代加深又结合了 bfs 的优点,即可以算最小步数 , 可以说是非常好的一种搜索算法
这个博客更新一些迭代加深算法的题目
题目
Guarding the Chessboard
大意:
给出一个 n * m 的棋盘, X 为所有的 标记点 ,问最少放多少个皇后可以覆盖所有的标记点;
思路
首先这是求最小步数的问题,其次时间限制为 10 s,非常宽裕 , 直接使用迭代深搜算法;
注意当我们放下一个皇后后,我们要更新覆盖状态 , 一个一个更新费时费力,我们可以用 行号 i 的状态代表当前行 的状态 ,用 列号 j 代表 当前列的状态 ,用 i+j 代表左斜列的状态 ,用 i - j + N 代表 右斜列的状态 (加N是为了保证这个数非负);
所有的左斜列 的 i + j 不变
所有的右斜列 的 i - j 不变
代码
#include<bits/stdc++.h>
using namespace std;
int n,m,maxn;
int c[11][12];
char a;
bool vis[4][30];
bool flag;
const int N = 11;
int cnt;
//左斜 i+j 右斜 i-j+N
bool check()
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(c[i][j]&&!vis[0][i]&&!vis[1][j]&&!vis[2][i+j]&&!vis[3][i-j+N]) return 0;
}
}
return 1;
}
//检查所有的标记点是否被覆盖
//vis[0][i] 代表行覆盖状态
//vis[0][j] 代表列覆盖状态
//vis[0][i+j] 代表左斜覆盖状态
//vis[0][i-j+N] 代表右斜覆盖状态
//如果标记点 四个状态都是未标记,则标记无效
void dfs(int x,int y,int d)
{
if(flag) return ;
if(d==maxn+1)
{
if(check()) flag=1;//标记成功
return ;
}
for(int i=x;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
int t1=vis[0][i],t2=vis[1][j],t3=vis[2][i+j],t4=vis[3][i-j+N];//记录标记前状态
vis[0][i]=vis[1][j]=vis[2][i+j]=vis[3][i-j+N]=1;//改变标记状态
if(j+1<=m) dfs(i,j+1,d+1);
else if(i+1<=n) dfs(i+1,1,d+1);
//搜索
vis[0][i]=t1;vis[1][j]=t2;vis[2][i+j]=t3;vis[3][i-j+N]=t4;
//回溯
}
}
}
int main()
{
while(cin>>n&&n)
{
cin>>m;
getchar();
getchar();
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m+2;j++)
{
a=getchar();
if(a=='X') c[i][j]=1;
else c[i][j]=0;
}
}
for(maxn=1;;maxn++)
{
flag=0;
memset(vis,0,sizeof(vis));
dfs(1,1,1);
if(flag)
{
cout<<"Case "<<++cnt<<": "<<maxn<<endl;
break;
}
}
}
}
反思:
在 dfs 的循环 里面,循环体写的是
for(int i=x;i<=n;i++)
for(int j=1;j<=m;j++)
很容易引发我们的思考
1.为什么列是从 1 开始 而不是 从 y 开始的?
2.从 1 开始不就有冗余部分了吗?
3.列 从 y 开始 到底对不对;
4.既然和 y 无关,可不可以 dfs 只写两个参数
5.为什么一开始要写两个 getchar(),以及读入的时候为什么列是[ 1 - m+2 ];
问题一
我们从 x 开始 从 y 开始的目的只有一个 ,那就是 优化程序 ,不必要走之前已经搜索过的位置,但是,当我们列从 y 开始的时候 不只是本行点从 y 列开始,下面的所有行列都从 y 开始 ,下面行 y列 之前的点都被我们忽略掉了,这样少搜了点,程序必然是不对的
问题二
确实有冗余部分,但不多,基于时间范围比较大还是可以接受的
问题三
列可以从 y 开始 ,不过要改变一下写法,不能影响到本行以下的列
下面是从 y 开始的代码
while(i<n)
{
while(j<m)
{
bool tmp1 = vis[0][i],tmp2 = vis[1][j],tmp3 = vis[2][i+j],tmp4 = vis[3][i-j+maxn];
vis[0][i]=vis[1][j]=vis[2][i+j]=vis[3][i-j+maxn] = 1;
if(dfs(i,j+1,d+1)) return 1;
vis[0][i] = tmp1,vis[1][j] = tmp2,vis[2][i+j] = tmp3,vis[3][i-j+maxn] = tmp4;
++j;
}
j %= m,++i;
}
问题四:
可以只写两个参数,因为确实与 y 无关
void dfs(int x,int d)
{
if(flag) return ;
if(d==maxn+1)
{
if(check()) flag=1;
return ;
}
for(int i=x;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
int t1=vis[0][i],t2=vis[1][j],t3=vis[2][i+j],t4=vis[3][i-j+N];
vis[0][i]=vis[1][j]=vis[2][i+j]=vis[3][i-j+N]=1;
dfs(i,d+1);
vis[0][i]=t1;vis[1][j]=t2;vis[2][i+j]=t3;vis[3][i-j+N]=t4;
}
}
}
问题五:
因为 LDU 的 判题机系统的问题,当用 getchar() 读空格的时候要读 2 次,用其他方式 读字母不需要这样 ,但笔者习惯用 getchar()
最后,这个题收获了很多,首先是状态压缩,用一个数表示一部分数的状态,其次是加深了对迭代深搜问题的理解,加深了对 void 类型 dfs 写法 的熟练程度 , 最后这个问题想了一下午,想通了真开心;