E:
大意: 一个 01序列 , 一种操作是改变其中一个数 ,求最多操作一次序列的最大的逆序对个数
01序列的逆序对就是统计每个 0 前面 1 的个数
当我们把 0 -> 1 的时候 , 贡献变化就是 后边 0 的个数 - 前面 1 的个数
当我们把 1 -> 0 的时候 , 贡献变化就是 前边 1 的个数 - 后边 0 的个数
线性的维护一下就好
本题的坑点在于有可能原序列的逆序对个数最大 , 即不做改变 , 比较一下即可
F
n 个事件 , 每个事件贡献是 a i a_i ai , k 是间隔天数 , 表示两个相同的事件间隔多少天完成 , c , d 表示需要 d 天 获得 c 的贡献 , 求最大的 k
考虑二分答案 , 为了使间隔天数尽可能大 , 我们优先放贡献大的事件
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define int long long
#define IOS std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
const int N = 2e5+10;
const int p = 1e9 + 7;
typedef pair<int,int>PII;
const int inf = 1e9 + 10;
const double eps = 1e-9;
int t , a[N] , n , c , d , maxx;
bool cmp(int a,int b){ return a > b; }
signed main(){
IOS
cin >> t;
while(t--){
cin >> n >> c >> d;
for(int i=0;i<n;i++){
cin >> a[i] ;
}
sort(a,a+n,cmp);
int l = 0 , r = d;
while(l <= r){
int mid = (l + r) / 2 , sum = 0;
for(int i=0;i<d;i++){
int id = i % (mid + 1);
if(id < n) sum += a[id];//这里一定注意间隔区间和数组区间的关系
}
if(sum >= c) l = mid + 1;
else r = mid - 1;
}
int id = l - 1;
if(id == d){
cout << "Infinity\n";
}else if(id == -1){
cout << "Impossible\n";
}else{
cout << id << "\n" ;
}
}
return 0;
}
注意二分的边界就是另外两种情况 , 不再去特判;
G:
一个无向图 , 路径都是带权路径 , 一个人要从 A -> B
在 A 点的初始值为 0 , 每到达一个新的点都要把值亦或上路径的权值 , 想要进入B , 需要在进入B后初始值重新归0 , 这个人可以传送一次 , 传送到任何一个点(除B外)
思路:首先我们不知道从A走到哪里 , 其次我们不知道传送到哪里然后走到B , 但是我们知道这两条路径的异或和相等
思路就是从 A 开始枚举所有能走的点 , 记录路径异或值 , 然后再从B开始枚举所有能走的点 , 找有没有跟之前一样的即可
坑点:有可能从A不走直接传送 , 所以初始的 0 也算一条路径 , 也应该记录下来
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define int long long
#define IOS std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
const int N = 2e5+10;
const int p = 1e9 + 7;
typedef pair<int,int>PII;
const int inf = 1e9 + 10;
const double eps = 1e-9;
int n , a , b , t;
vector<PII>ve[N];
bool vis[N];
map<int,int>mp;
bool f = 0;
void dfs1(int st ,int pre ,int now){
for(auto [x,y] : ve[st]){
if(x == pre || x == b) continue;
mp[now ^ y] = 1;
dfs1(x , st , now ^ y);
}
}
void dfs2(int st , int pre , int now){
if(f) return ;
for(auto [x,y] : ve[st]){
if(x == pre) continue;
if(mp[now ^ y]){f = 1;return ;}
dfs2(x , st , now ^ y);
}
}
signed main(){
IOS
cin >> t;
while(t--){
cin >> n >> a >> b;
for(int i=1;i<=n;i++) ve[i].clear();
mp.clear();
f = 0;
mp[0] = 1;
for(int i=1;i<=n-1;i++){
int u , v , w;
cin >> u >> v >> w;
ve[u].emplace_back(v,w);
ve[v].emplace_back(u,w);
}
dfs1(a,a,0);
dfs2(b,b,0);
if(f) cout << "Yes\n";
else cout << "No\n";
}
return 0;
}