题意大概是:
给你一个n个点m条边的无向无环图,在尽量少的节点上放灯,使得所有边都被照亮。每盏灯将照亮以它为一个端点的所有边。在灯的总数最少的前提下,被两盏灯同时照亮的边数应尽量大。
【输入格式】
T组数据,每组数据第一行为两个整数n和m,即点数(所有点的编号为0~n-1)和边数。在下面有m行为两个不同的整数a和b,表示有一条边连接a和b。T<=30,m<n<=1000,
0<=a,b<=n.
【输出格式】
对于每组数据,输出3个整数,即灯的总数,被两个灯照亮的边数和只被一个灯照亮的边数。
先上代码()
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
vector<int>adj[1010];
//森林是稀疏的,这样省空间,枚举相邻节点也更快 有时候也奇怪为什么很多地方的开数组都比范围大10呢?估计是为了美观又舒服吧(也可能防止数据超出)
int vis[1010][2],d[1010][2],n,m;
int dp(int i,int j,int f){
//在DFS的同时进行动态规划,f是i的父节点,它不存入状态里
if(visit[i][j])return d[i][j];
visit[i][j]=1;
int &ans=d[i][j]//这样可以在下面直接用ans代替d[i][j]了
//放灯总是合法决策(虽然不一定是最优的)
ans=2000;
for(int k=0;k<adj[i].size();k++)
if(adj[i][k]!=f)//除了父节点之外的相邻节点才是子节点
ans+=dp(adj[i][k],1,i);
if(!j&&f>=0)ans++;//如果i不是根,且父节点没放灯,则ans加一;
if(j||f<0){ //i是根或者其父节点已放灯,i才可以不放灯
int sum=0;
for(int k=0;k<adj[i].size();k++)
if(adj[i][k]!=f)
sum+=dp(adj[i][k],0,i);
if(f>=0)sum++;//如果i不是根,则sum加一
ans = min(ans,sum);
}
主函数不写了
也就是答案为 ans/2000,m-ans%2000,ans%2000;