传送门:hdu 2068 RPG的错排
中文题目,不做过多的解释
解题思路
这里用到了一个错排公式
!
什么是错排公式:
n个元素理应由n!个不同的排列。如果n个元素都在不原来的位置,我们叫这种排列方式为错排!
给定任意一个整数N,求出1,2,3….N的错排个数共有多少个。
递推关系式为:D(n)=(n-1)(D(n-1)+D(n-2))
证明如下:
n 个不同元素的一个错排可由下述两个步骤完成:
第一步,“错排” 1 号元素(将 1 号元素排在第 2 至第 n 个位置之一),有 n - 1 种方法。
第二步,“错排”其余 n - 1 个元素,按如下顺序进行。视第一步的结果,若1号元素落在第 k 个位置,第二步就先把 k 号元素“错排”好, k 号元素的不同排法将导致两类不同的情况发生:
1、 k 号元素排在第1个位置,留下的 n - 2 个元素在与它们的编号集相等的位置集上“错排”,有 f(n -2) 种方法;
2、 k 号元素不排第 1 个位置,这时可将第 1 个位置“看成”第 k 个位置(也就是说本来准备放到k位置为元素,可以放到1位置中),于是形成(包括 k 号元素在内的) n - 1 个元素的“错排”,有 f(n - 1) 种方法。据加法原理,完成第二步共有 f(n - 2)+f(n - 1) 种方法。
根据乘法原理, n 个不同元素的错排种数
f(n) = (n-1)[f(n-2)+f(n-1)] (n>2)
知道了这个之后代码就很容易写出来了。
AC代码
#include<cstdio>
const int MAXN = 128;
long long c(int n,int m){
long long a=1;
if(m==0)
return 1;
for(int i=1;i<=m;i++){
a=a*(n-i+1);
a=a/i;
}
return a;
}
int main()
{
int n;
int a[MAXN];
a[0]=1,a[1] = 0,a[2] = 1;
for(int i=3;i<MAXN;i++)
a[i] = (i-1)*(a[i-1]+a[i-2]);
while(~scanf("%d",&n)&&n)
{
long long sum =0;
for(int i=0;i<=(n/2);i++) sum+=a[i]*c(n,i);
printf("%lld\n",sum);
}
return 0;
}