代码重写:eeg数据处理

原来的帧移帧长会将数据变长很多。但实际上,我们可以做一些操作.改写dataset就可以了

class AADDataset(Dataset):
    '''
    x: Features.
    y: Targets, if none, do prediction.
    '''
    def __init__(self, x, y):
        self.y = torch.FloatTensor(y)
        self.x = torch.FloatTensor(x)

    def __getitem__(self, idx):
        dim = list(self.x.size())
        pointrange = dim[1]-train_length
        tr = int(idx / pointrange)
        point = idx % pointrange
        return self.x[tr,point:point+train_length,:], self.y[tr,point:point+test_length,:]

    def __len__(self):
        dim = list(self.x.size())
        return dim[0]*(dim[1]-train_length)

只要改写len就可以找到idx的范围,然后再在getitem里面解决idx的下标问题,困扰许久的帧长帧移问题就解决了。

 可以看到改写之后和改写之前结果几乎一样

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值