深度学习---卷积神经网络解决分类与回归问题

本文介绍了卷积神经网络的发展历程,包括LeNet、AlexNet、GoogleNet和VGGNet等,强调了更深的网络结构对性能的提升。接着,详细讨论了分类和回归的区别与联系,指出物体检测结合了两者。最后,阐述了CNN训练过程,包括模型选择、微调策略、回归模块的添加,并提到了滑动窗口、选择性搜索算法以及R-CNN、fast R-CNN和faster R-CNN等物体检测方法。
摘要由CSDN通过智能技术生成

一、CNN神经网络的发展史:
Lenet,1986年
Alexnet,2012年 2012年,Imagenet比赛冠军的model——Alexnet [2](以第一作者alex命名),AlexNet 是一种典型的 convolutional neural network,它由5层 convolutional layer,2层 fully connected layer,和最后一层 label layer (1000个node, 每个node代表ImageNet中的一个类别) 组成
GoogleNet,2014年 14年比赛冠军的model,这个model证明了一件事:用更多的卷积,更深的层次可以得到更好的结构。
VGG,2014年 VGGNet是google和牛津大学一起研发的卷积神经网络,VGG-Net不同于AlexNet的地方是:VGG-Net使用更多的层,通常有16-19层,而AlexNet只有8层。另外一个不同的地方是:VGG-Net的所有convolutional layer 使用同样大小的 convolutional filter,大小为 3 x 3。
Deep Residual Learning,2015年,这个model是2015年底最新给出的,也是15年的imagenet比赛冠军。可以说是进一步将conv进行到底,最深的model采用的152层
不同的卷积神经网络的对比:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值