深度学习---卷积神经网络CNN概念及计算过程

一、卷积神经网络的介绍
1、简介:卷积神经网络(Convolutional Neural Networks)是一种深度学习模型或类似于人工神经网络的多层感知器,常用来分析视觉图像。卷积神经网络的创始人是著名的计算机科学家Yann LeCun,目前在Facebook工作,他是第一个通过卷积神经网络在MNIST数据集上解决手写数字问题的人。
2、解决的问题:
分类问题、推荐系统、检测系统、自动驾驶汽车、分割数据监测、人脸识别
二、CPU与GPU
1、CPU中央处理器:解释计算机指令以及处理计算机软件中的数据,读取指令编译并执行。
2、GPU图形处理器:是图形结构的重要元件,是连接计算机和显示终端的纽带。
3、区别
GPU比CPU的计算速度快.CPU是串行,GPU是并行计算,除了图像处理也更多地参与到计算中。
三、卷积神经网络结构
输入层
卷积层(CONV)
激活函数
池化层
全连接层
输出层
①数据输入层
数据预处理:去均值、归一化、PCA降维
②卷积计算层
两个关键操作:
局部关联:每一个神经元可看作一个滤波器
窗口滑动:filter对局部数据计算
卷积计算过程
(input*filter)+bias—>output

a.padding(填白)
目的:让数据参与计算更平均
为什么填0?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值