什么是DCI? 它有什么用?

当你学习LTE的物理帧(physicalframe)结构时,你肯定会有所体会:”靠,怎么这么复杂啊”.物理帧结构是时域 (Time Domain)、频域(Frequency Domain)和调制方式(modulation scheme)的组合。

你可能会有疑问:”接收方怎么知道发送方在那个slot以什么调制方式发送了数据呢?也就是说接收方捕获了物理信号,怎么解码呢?”这时候就用到了 DCI (Downlink Control Indicator);

DCI 能够提供如下信息:

·        Which resource block carries your data?

·        What kind of demodulation scheme you have to useto decode data?

·        UL resource allocation;

接收方需要首先得到DCI,让后基于DCI所提供的信息来解码所传送的数据。

PDCCH is a physical channel that carries downlinkcontrol information (DCI)

### 反向传播算法概念 反向传播算法是一种用于训练人工神经网络的监督学习方法。此算法的核心在于利用链式法则计算损失函数相对于各权重的梯度,从而调整这些权重以最小化预测误差[^1]。 ### 原理阐述 #### 正向传递阶段 在网络接收输入数据并进行正向传播的过程中,每层节点依据前一层传来的加权和加上偏置项后的激活值作为自身的输出。这一过程持续至最终输出层产生模型对于给定样本集的预测结果[^4]。 ```python def forward_pass(input_data, weights, biases): activations = input_data for w_layer, b_layer in zip(weights[:-1], biases[:-1]): z = np.dot(w_layer.T, activations) + b_layer activations = sigmoid(z) # For the output layer using softmax activation function. final_z = np.dot(weights[-1] predictions = softmax(final_z) return predictions ``` #### 计算误差 当获得预测值之后,会将其与实际标签对比得出差异程度——即所谓的“误差”。通常采用均方差(MSE)或交叉熵(Cross Entropy Loss)等形式表达这种差距大小。 #### 反向传播阶段 一旦确定了整体系统的总误差,则可以开始执行真正的核心部分—反向传播: - **从末端到前端逐步回溯**:按照从输出层往回走的方式依次处理各个隐藏单元; - **应用链式法则**:借助于微分学里的链式法则来解析当前层级上的局部变化如何影响全局性能指标; - **累积贡献量**:记录下每个连接边所携带的信息流强度及其方向性特征,以便后续更新操作时能够精准定位责任归属[^3]。 ```python def backward_pass(predictions, actual_labels, weights, learning_rate=0.01): error = predictions - actual_labels # Calculate delta at output layer. deltas = [] for i in reversed(range(len(weights))): if i == len(weights)-1: delta = error * derivative_softmax(predictions) else: delta = (deltas[-1].dot(weights[i+1])) * derivative_sigmoid(layer_activations[i]) deltas.append(delta) deltas.reverse() gradients = [] for d, a in zip(deltas, [input_data]+layer_activations[:-1]): gradient = d[:,np.newaxis]*a[np.newaxis,:] gradients.append(gradient) updated_weights = [ weight - learning_rate*grad for grad, weight in zip(gradients, weights)] return updated_weights ``` #### 参数更新 最后一步便是根据之前收集好的信息完成对原始参数矩阵Wij以及biases的具体修正工作。一般而言,这涉及到简单的减去按比例缩放过的梯度向量。 ### 实现总结 综上所述,在构建一个多层感知机架构下的深度学习框架时,除了要精心设计好每一级之间的映射关系外,更重要的是掌握一套有效的优化策略使得整个体系能够在有限次数内收敛到较优解附近。而BP正是这样一种经典而又实用的技术手段之一[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值