【DP算法篇之初学】LIS\LCS\二维DP\带条件DP

最近参加2016华为软件精英挑战赛,题目也比较直接,就是求过定点的最短路。这题和以前练得不一样,感觉是不是要用DP(动态规划)。可是对于DP算法,我还是啥都不懂,于是好好补补。


主要是参考这篇博文:http://www.hawstein.com/posts/dp-novice-to-advanced.html(动态规划:从新手到专家)


看完入门,有点感觉了,然后是LIS问题,文中又提到了LCS问题,说这个更基础,于是转去看LCS。

关于LCS,有一篇清晰易懂的好博,见:http://songlee24.github.io/2014/11/27/dynamic-programming/(神奕的博客)

这张图是算法关键:


注意这里的C[i][j],x[i],y[j]下标含义一样,指向相同的位置~


看完LCS,就拿poj1458练练手:

//time:16MS
//mem:396K

#include <string>
#include <iostream>
#include <vector>

using namespace std;

inline int max(int a, int b)
{
	return a > b ? a : b;
}

int LCS(const string x, const string y)
{
	int m, n, i, j;
	m = x.length();
	n = y.length();

	vector<vector<int> > table(m + 1, vector<int>(n + 1));
	
	for(i = 0; i < m + 1; ++i)
	{
		for(j = 0; j < n + 1; ++j)
		{
			if(
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值