DP ——线性dp之LIS

这篇博客介绍了如何使用线性动态规划(DP)解决最长递增子序列(LIS)问题,包括两种算法:一种是平方时间复杂度的直接DP方法,另一种是更高效的nlogn解决方案,利用隐式DP和单调队列优化。
摘要由CSDN通过智能技术生成

POJ 1631

LIS解析:

LIS 是 longest Increasing Sequence
是一道典型的线性DP问题,有两种算法可以求
一种是n^2 的算法,
设a: 1-n 的序列
for i 1->n
for j 1->i dp[i] = 1
d[i] = max{dp[i],dp[j]+1(a[j] < a[i])}

另一种nlogn即可(隐形DP)
设a: 1-n 的序列
设b 记录长度为i子序列的最小尾数的序列//次序列单调
for i 1 -> n
k++ 或 binary;

AC code:

#include <iostream>
#include <string>
#include <cstdio>
#include <algorithm>
#include <cmath&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值