Twitter 工程师谈 JVM 调优

                               Twitter 工程师谈 JVM 调优

        本文转自码农网Codeceo:http://www.codeceo.com/article/twitter-jvm-performance.html
    作者:文牛武人

一. 调优需要关注的几个方面

  • 内存调优
  • CPU 使用调优
  • 锁竞争调优
  •  I/O 调优

二. Twitter 最大的敌人:延迟

      导致延迟的几个原因?

  • 最大影响因素是 GC
  • 其他的有:锁和线程调度、I/O、算法数据结构选取不当效率低

三. 内存性能调优

  (1)内存占用调优

         OutOfMemoryError 异常原因:可能真的数据量太大、可能要数据显示的太多、可能内存泄露

        ① 数据量太大观察及解决:

  • 查看 GC 日志, 看 Full GC 前后内存变化, 变化不大说明确实数据量太大。
  • 尝试增加 JVM 的内存使用。
  • 考虑这些数据是否真的需要都在内存中吗? 可以考虑使用: LRU 算法换入换出等, 弱引用(Soft References)。

        ② 数据臃肿(Fat data)。

           当你想做一些奇怪的事情时候回发生数据占用太大问题,比如:把整个社交图谱加载到单个 JVM 实例上、加载全部用户的元数据到单个 JVM 实例上。

  • 在 Twitter 这样大的规模下减少内部数据呈现工作。

        数据臃肿原因:

        (1)对象头(JVM 对象头一般占用两个机器码,在 32-bit JVM 上占用 64bit, 在 64-bit JVM 上占用 128bit 即 16 bytes, 例如:new java.lang.Object() 占用 16 bytes; new byte[0] 占用 24 bytes)  更多对象头内容考:http://blog.csdn.net/wenniuwuren/article/details/50939410

        (2)填充补全

          看个例子:

public static class D {  
    byte d1;  
}  

public static class E extends D {  
    byte e1;  
}

  new D() 占用 24 bytes 空间, new E() 占用 32 bytes 空间。 具体空间计算参考:http://blog.csdn.net/wenniuwuren/article/details/50958892

     现在一般是 64-bit 的 JVM,64-bit 的指针会导致 CPU 缓存相比 32-bit 指针减少很多, 所以建议 JVM 参数加入 -XX:+UseCompressedOops 采用指针压缩将 64-bit 指针压缩为 32-bit, 但是却又能使用 64-bit 的内存空间, 达到一举两得的作用。另外,建议最大堆小于 30G。

     ③尽量别使用原始类型对象的包装类:

     在 Scala 2.7.7 中:Seq[Int] 存 Integer,Array[Int] 存 int, 第一个空间占用 (24 + 32*length) bytes,第二个空间占用 (24 + 4*length) bytes。

     在 Scala 2.8 中修复了这个问题, 从这我们可以看出:

  • 你不清楚你所使用类库的性能特征(比如能用 int 就用 int)。
  • 除非在性能分析工具下运行, 否则你可能永远不知道这个问题。

     ④ Map 空间占用(Map footprints)

  • Guava MapMaker.makeMap() 占用 2272 bytes。
  • MapMaker.concurrencyLevel(1).makeMap() 占用 352 bytes。

     ⑤ 小心使用 Thread Local

           典型的问题在线程池 m*n 的资源相关,如 200 线程池使用了 50 个连接,最终有 10000 个连接缓存。

           考虑使用同步对象或者每次新建一个对象。

四. 与延迟做斗争

          性能三角

                                                           图1:内存占用下降,延迟下降,吞吐量上升

                                图2:压缩(Compactness,即减小内存占用)率上升,吐量上升,响应速度上升

       ① 新生代是如何工作的?

  •   所有新对象分配在 Eden 代,因为新生代 GC 有压缩,所以内存分配用指针碰撞。
  •   当 Eden 满的时候,进行一次 stop-the-world 的 Minor GC,存活下来的放到 Survivor。
  •   经过几次 Minor GC,还存活下来的对象会被提升(tenured)到老年代。

       ② 理想化的新生代操作:

  •  Eden 代足够容纳超过一组并发的请求和响应对象(这样没有 stop-the-world,吞吐量会比较高)。
  •  每个 Survivor 空间足够容纳活跃对象和有年龄的对象(减少过早提升到老年代)。
  •  提升阈值正好能让存活时间长的对象早点提升到老年代(给 Survivor 腾出空间)。

     ③ 从新生代开始调优:

  •  打印详细 GC 日志, 如开启 JVM 参数:-XX:+PrintGCDetails,-XX:+PrintGCDateStamps,-XX:+PrintHeapAtGC,-  XX:+PrintTenuringDistribution 等等…
  •  关注 Survivor 大小,设置合适的 Survivor 大小。
  •  关注提升阈值,使长期存活对象快速提升到老年代。

       (1)-XX:+PrintHeapAtGC

Heap after GC invocations=1 (full 0):  
 par new generation   total 943744K, used 54474K [0x0000000757000000, 0x0000000797000000, 0x0000000797000000)  
  eden space 838912K,   0% used [0x0000000757000000, 0x0000000757000000, 0x000000078a340000)  
  from space 104832K,  51% used [0x00000007909a0000, 0x0000000793ed2ae0, 0x0000000797000000)  
  to   space 104832K,   0% used [0x000000078a340000, 0x000000078a340000, 0x00000007909a0000)  
 concurrent mark-sweep generation total 1560576K, used 0K [0x0000000797000000, 0x00000007f6400000, 0x00000007f6400000)  
 concurrent-mark-sweep perm gen total 159744K, used 38069K [0x00000007f6400000, 0x0000000800000000, 0x0000000800000000)  
}

      (2)-XX:+PrintTenuringDistribution

Desired survivor size 53673984 bytes, new threshold 4 (max 6)  
- age   1:    9165552 bytes,    9165552 total  
- age   2:    2493880 bytes,   11659432 total  
- age   3:    6817176 bytes,   18476608 total  
- age   4:   36258736 bytes,   54735344 total  
: 899459K->74786K(943744K), 0.0654030 secs] 1225769K->401096K(2504320K), 0.0657530 secs] [Times: user=0.55 sys=0.00, real=0.07 secs]

     ⑤ CMS 调优

  •  CMS 收集器需要更多的内存, 尽量多分配就对了。
  •   减少碎片、避免 Full GC。
  •  -XX:CMSInitiatingOccupancyFraction=n n一般设置为 75-80(太早启动降低吞吐量,太晚启动导致 concurrent mode failed)。

     ⑥ 响应速度还是太慢?

  •   Minor GC 时有太多存活对象,尝试减少新生代空间,减少 Survivor 空间,减少晋升阈值。
  •   太多线程。尝试找到最小的并发层次或者增加更多 JVM 实例。
  •   尝试使用 Volatile 而不是 synchronized 减少锁竞争,尝试使用 Atomic* 的原子类。

      ⑦ 用分配 slab 应对 CMS 的碎片问题:

         Apache 的 Cassandra 内部使用 slab 分配。每个 slab 大小为 2MB,使用 CAS 复制 byte[] 到里面,使用 Cassandra 前开销为 30-60 秒每小时, 使用后在3天零十小时开销 5 秒。

         使用分配 slab 的方式有一些局限性:在缓存满的时候才把缓存内容写进磁盘,而且对象需要转化为二进制等问题。

智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值