新一代AI换脸和人脸增强软件及使用教程!facefusion

又有新东西咯!

roop停更了,核心开发者独立发布了一个项目,就是这个叫facefusion的项目。官方介绍为下一代的人脸交换和增强软件

这是官方预览图,又红又紫,确实有点fusion的感觉。

这次的软件使用gradio构建了WebUI,界面上有很多选项。

可以设置很多参数,比如:

设置人脸替换

设置人脸增强

设置画面增强

设置GPU和CPU

设置线程数量

设置缓存文件格式

设置缓存帧的质量

设置保持帧率不变

设置保持缓存文件

设置音频还原

设置视频编码和视频质量

设置参考人脸替换和全部替换

通过相似度选择人脸

通过方位选择人脸

通过年龄选择人脸

通过性别选择人脸

支持换脸和预览

支持图片和视频换脸。

经过几天的努力,已经将这个新项目打包。下面说一下具体的使用方法!

首先,根据文末的方式获取软件并解压,请注意要解压到一个英文路径下,最好是放非C盘的根目录,比如D盘下面。

解压之后只需要点击"启动.exe"

启动会非常快,启动之后会出现一个网址http://127.0.0.1:7860

复制到浏览器,打开就可以看到界面了。

完整的界面如下:

目前界面为英文版,选项挺多,乍看之下可能不知道从哪里入手。

核心操作其实非常简单,根据下图来就好了。

① 设置人脸(Source)

只要点击这个框框就会跳出文件管理器,选择一张带清晰完整人脸图片就可以了。注意图片名字用英文和数字。

② 设置目标(Target)

方法同上,目标可以是图片,也可以是视频。

③ 效果预览 (Preview)

一定选中目标之后,软件里面就开始运行,运行之后会把合成预览显示在这个区域。换的是图片,其实预览区域就是换脸后的结果了。

换的是视频的话,会截取某一帧作为预览效果。

④ 开始换脸(Start)

一切就绪之后,就可以点击按钮开始换了。

⑤ 查看结果(OUTPUT)

换脸成功之后,会把结果显示在这里。点击右上角的下载图标,就可以把结果保存下来了。

上面就是核心步骤,整体来说已经非常简单了。

下面说一下左侧的参数设置。

①处理器

处理器,包含了换脸,人脸增强,帧增强。

换脸是最基本的,肯定要勾选。

人脸增强可选,不选会比较模糊,相似度高。勾选后会更清楚,相似度有所下降,消耗更多的硬件资源。

帧增强这是新加入的一个增加方式,会对整个画面进行修复。这个看情况来,个人感觉如果同时启动人脸增强和帧增强,会有点假。

②执行器

执行器就是运行设备,可以选择Tensor,Cuda,cpu。

启动之后默认只勾选了CPU,一般来说大家都是用显卡跑,只要勾选一下CUDA就可以了。

③缓存帧

缓存帧主要是针对视频,在视频换脸过程中,会先把视频的每一帧都转换成图片。这个时候就会涉及到图片质量和图片格式的问题了。

PNG是无损转换,但是硬盘代价很高,时间会慢。

JPG可以保证质量损失不大,但是效率超高,文件大小减少巨多。

④开关参数

开关参数,主要就是保持帧率,保留缓存数据,音轨。

保持帧率最好开启,否则可能会声音和画面不同步。

缓存数据不需要勾选。

音轨,不勾选,代表保留音轨。

下面再说一下右下方的参数。

① 人脸识别方式选择

这里主要是两种方式,一种是制定人脸,一种是全部替换。

指定人脸,默认使用人脸相似度来指定。

② 通过方向选择

通过人脸在图片中的位置和大小选择要替换的人脸。

③通过年龄选择

通过不同年龄段来选择要选好的人脸。

④通过性别选择

通过性别来选择要替换的人脸。

选择方式更多了,但是实测好像有点问题。

所以主要还是用默认的方式。

用过roop的对整个流程和大部分参数应该比较熟悉。该讲的也全部讲到了,大家可以自己下载软件去实践。

老规矩:

给公众发送"facefu" 就可以获取到软件了。

别忘了动动手指哦!

### 改善FaceFusion AI绘图照片效果的方法 #### 提高数据质量 为了获得更好的效果,输入图像的质量至关重要。高质量的数据集能够显著提升模型的表现。确保用于训练的人脸图片具有足够的分辨率多样的角度、光照条件[^1]。 #### 增加样本多样性 当只有少量的照片作为源时,可以尝试通过增加同姿态、表情以及环境光下的额外样本来扩充数据库。这有助于覆盖更多可能的情况并减少过拟合的风险,从而使得生成的结果更加自然真实。 #### 后期处理优化 即使是最先进的算法也可能留下一些瑕疵,比如轻微的噪点或其他完美之处。因此,在完成初步合成之后应用适当的滤镜或编辑工具来清理这些细节是非常必要的。GFPGAN等插件可以帮助修复面部特征中的缺陷,使最终产物看起来更平滑细腻[^2]。 #### 调整超参数 对于基于神经网络的技术而言,合理配置各项参数同样重要。例如,在使用`inswapper_128.onnx`执行人脸的过程中,可以根据具体需求微调其内部设定;而在利用`gfpgan_1.4.onnx`做增强处理前也可以探索同的选项组合以找到最适合当前项目的那一组值。 #### 使用预训练模型 采用已经经过大规模公开数据集充分训练过的权重文件(如YoloV8系列),可以在很大程度上加快开发进度的同时保证良好的泛化能力。此外,针对特定应用场景还可以考虑进一步fine-tune现有模型以便更好地适应实际业务逻辑的要求[^3]。 ```csharp // C#代码片段展示如何加载ONNX模型进行推理操作 using Microsoft.ML.OnnxRuntime; using System; public class FaceProcessor { private InferenceSession session; public void LoadModel(string modelPath){ this.session = new InferenceSession(modelPath); } // 更多功能... } ```
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值