multi-sensor
踏雪飞鸿Jaf
学而不思则罔,思而不学则殆
展开
-
从概率学看卡尔曼滤波
前面我写了一篇关于贝叶斯滤波的博客,详细推导了贝叶斯滤波,。也介绍了为了解决贝叶斯滤波中的无穷积分问题,产生了许多滤波方法,讨论了不同滤波方法之间的关系其中卡尔曼滤波应用比较广泛,这里详细推导一下卡尔曼滤波。 这篇博客大部分参考了b站视频:忠厚老实的王大头 感谢up主做的视频1. 假设假设f(xk−1)、h(xk)为线性,Qk、Rk为正态分布,Xk−1∼N(μk−1+,σk−1+)假设f(x_{k-1})、h(x_k)为线性,Q_k、R_k为正态分布,X_{k-1} \sim N原创 2020-06-18 18:58:38 · 4298 阅读 · 5 评论 -
贝叶斯滤波、卡尔曼滤波和粒子滤波的关系
前面博客介绍了贝叶斯滤波的详细推导,里面说了贝叶斯滤波的缺点是无穷积分没办法准确积分的问题。缺点也很明显,从fk−1+(x)→fk−(x)f_{k-1}^+(x)\to f_k^-(x)fk−1+(x)→fk−(x),计算η\etaη,计算期望x^k\hat{x}_kx^k,都需要做无穷积分,大多数情况下没有解析解。 后面研究者为了解决这个积分问题,做了不同的假设,引入了不同的方法,于是就产生了各种滤波。卡尔曼滤波(KF) 、扩展卡尔曼滤波(EKF)、UKF、高斯积分滤波、粒子滤波(蒙特原创 2020-06-18 10:44:30 · 3641 阅读 · 1 评论 -
你真的搞懂贝叶斯滤波了吗?
一谈到贝叶斯滤波,就开始联系到各种随机过程、概率密度函数等等,那些曾经上课都听不进去的东西,这里能讲清楚吗?我自己也会有这个疑惑,不过要看懂贝叶斯滤波原理还是需要一定基础的。这篇博客,我会尽量讲得通俗一点,方便理解一点。一、先验知识1. 随机过程与概率论 两门都是大学学过的课程,那它们之间到底有什么关系呢?呃…其实大学期间自己也没理解,笑cry。随机过程:研究的随机变量之间不独立,由于...原创 2020-05-06 19:03:34 · 12252 阅读 · 11 评论