从概率学看卡尔曼滤波

本文详细介绍了卡尔曼滤波的原理,包括线性假设、预测步和观测更新步的数学推导。通过贝叶斯滤波的基础,探讨了卡尔曼滤波如何解决积分问题,并给出了卡尔曼滤波的五大核心公式,适用于自动驾驶等领域的状态估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 前面我写了一篇关于贝叶斯滤波的博客,详细推导了贝叶斯滤波,。也介绍了为了解决贝叶斯滤波中的无穷积分问题,产生了许多滤波方法,讨论了不同滤波方法之间的关系其中卡尔曼滤波应用比较广泛,这里详细推导一下卡尔曼滤波。
 
 这篇博客大部分参考了b站视频:忠厚老实的王大头
 感谢up主做的视频

1. 假设

假 设 f ( x k − 1 ) 、 h ( x k ) 为 线 性 , Q k 、 R k 为 0 均 值 正 态 分 布 , X k − 1 ∼ N ( μ k − 1 + , σ k − 1 + ) 假设f(x_{k-1})、h(x_k)为线性,Q_k、R_k为0均值正态分布,X_{k-1} \sim N(\mu_{k-1}^+,\sigma_{k-1}^+) f(xk1)h(xk)线QkRk0Xk1N(μk1+,σk1+),所以状态转移方程和观测方程可以写成:
{ X k = f ( X k − 1 ) + Q k = F ∗ X k − 1 + Q k Y k = h ( X k ) + R k = H ∗ X k + R k \begin{cases} X_k = f(X_{k-1})+Q_k=F*X_{k-1}+Q_k \\ Y_k = h(X_k)+R_k = H*X_k+R_k \end{cases} { Xk=f(Xk1)+Qk=FXk1+QkYk=h(Xk)+Rk=HXk+Rk

2. 预测步

f k − ( x ) = ∫ − ∞ + ∞ f Q k [ x − f ( v ) ] f k − 1 + ( x ) d v = ∫ − ∞ + ∞ ( 2 π Q ) − 1 2 e − ( x − F v ) 2 2 Q ∗ ( 2 π σ k − 1 + ) 1 2 e − ( v − μ k − 1 + ) 2 2 σ k − 1 + d v \begin{aligned} f_k^-(x)&=\int_{-\infty}^{+\infty}f_{Q_k}[x-f(v)]f_{k-1}^+(x)dv \\ &=\int_{-\infty}^{+\infty}(2\pi Q)^{-\frac{1}{2}}e^{-\frac{(x-Fv)^2}{2Q}}*(2\pi \sigma_{k-1}^+)^{\frac{1}{2}}e^{-\frac{(v-\mu_{k-1}^+)^2}{2\sigma_{k-1}^+}}dv \end{aligned} fk(x)=+fQk[xf(v)]fk1+(x)dv=+(2πQ)21e2Q(xFv)2(2πσk1+)21e2σk1+(vμk1+)2dv
 这里的积分手算方法 { ① 复 变 函 数 , 用 留 数 定 理 算 ② 用 傅 里 叶 变 换 + 卷 积 去 算 \begin{cases} ①复变函数,用留数定理算 \\②用傅里叶变换+卷积去算 \end{cases} { +
 
 这里用第②种方法积分,先看看一些基本条件:
{

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值