Deep Seek的发展简介

首先先祝大家新年快乐,如果喜欢我的博客的话记得多多点赞支持

前言

人工智能的浪潮席卷全球,通用人工智能(AGI)作为这一领域的终极目标,吸引了无数科技企业与研究机构的探索,在中国,一家名为深度求索(DeepSeek)的初创公司凭借其独特的技术路径与开放生态战略,迅速崭露头角。自成立以来,DeepSeek不仅以高效的大模型研发能力引发行业关注,更以“降低AGI实现成本”为使命,然后推动了人工智能技术的普惠化进程。本文将以时间为脉络,梳理DeepSeek从诞生到行业引领者的关键历程。


背景介绍:AI 2.0时代的机遇与挑战

2010年代后期,随着Transformer架构的提出和GPT-3等大模型的突破,全球AI技术进入“预训练大模型”主导的2.0时代。中国科技界迅速响应,百度、阿里等巨头纷纷布局,但高昂的算力成本与封闭的技术生态成为行业痛点。与此同时,学术界与产业界对AGI落地的可行性争议不断——大模型是否真能通向通用智能?如何平衡技术创新与商业回报?这些问题催生了一批以技术革新为核心竞争力的初创企业,DeepSeek正是在此背景下应运而生。


DeepSeek发展历程

第一阶段:创立与核心技术突破(2023年)

2023年初,DeepSeek由多位来自中国顶尖高校和科技企业的AI专家联合创立。创始团队认为,AGI的实现需要“更高效的模型架构”与“更低成本的训练方法”。成立仅3个月后&

### MATLAB 中连接和使用 Deep Seek Deep Seek 是一种用于地下探测的技术,通常涉及地震数据分析和其他地球物理方法。然而,在提供的参考资料中并未提及具体有关于 MATLAB 连接 Deep Seek 的信息。 尽管如此,假设要实现 MATLAB 和 Deep Seek 之间的集成,可以从以下几个方面考虑: #### 数据导入与预处理 对于来自 Deep Seek 设备的数据文件,如果这些数据是以 SEISMIC BINARY DATA 形式存储,则可以根据已有的经验来加载这类二进制格式的数据[^1]。这一步骤至关重要,因为正确解析原始采集到的信息是后续分析工作的基础。 ```matlab % 假设 deepSeekDataFile.mat 包含由 Deep Seek 获取并保存成 MAT 文件的数据 data = load('deepSeekDataFile.mat'); disp(data); ``` #### 移除批归一化 (Batch Normalization) 层 考虑到在构建神经网络模型时可能会遇到稳定性问题以及伪影现象,建议遵循最佳实践去除不必要的 BN 层以提高整体表现并减少资源消耗[^2]。这对于任何类型的输入数据集都是适用的原则,包括但不限于通过像 Deep Seek 这样的设备获得的数据。 #### 极值波延拓及其意义 极值波延拓指的是对信号中的极大值或极小值点进行扩展操作,以便更好地理解其特征和发展趋势。这一概念同样适用于处理来自不同源的数据流,比如地质勘探过程中产生的波动记录。利用 MATLAB 提供的强大工具箱功能,可以方便地执行此类运算,并进一步探索潜在的应用场景[^3]。 虽然上述讨论并没有直接提到如何将 MATLAB 同特定品牌的产品——即此处所说的 "Deep Seek" ——相联结的具体细节,但是按照通用的方法论框架来进行开发工作仍然是可行且有效的路径之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值