题目描述
几乎每一个人都用 乘法表。但是你能在乘法表中快速找到第k小的数字吗?
给定高度m 、宽度n 的一张 m * n的乘法表,以及正整数k,你需要返回表中第k 小的数字。
例 1:
输入: m = 3, n = 3, k = 5
输出: 3
解释:
乘法表:
1 2 3
2 4 6
3 6 9
第5小的数字是 3 (1, 2, 2, 3, 3).
例 2:
输入: m = 2, n = 3, k = 6
输出: 6
解释:
乘法表:
1 2 3
2 4 6
第6小的数字是 6 (1, 2, 2, 3, 4, 6).
注意:
m 和 n 的范围在 [1, 30000] 之间。
k 的范围在 [1, m * n] 之间。
解题思路
- 解法1:
从i=1
开始,计算每个数字在m * n乘法表中出现的次数,当这个累加次数第一次大于等于k时,此时的i
即为返回结果。
这种方法完全正确,但是当m和n非常大,且k的值十分接近m * n时,运算时会超时。例如,m=9895,n=28405,k=100787757
时,会超出时间限制。但是m=9895,n=28405,k=1007877
时则不会超时,且结果完全正确。
class Solution {
int m,n;
public int findKthNumber(int m, int n, int k) {
this.m=m;
this.n=n;
int num=0;
for (int i = 1; i <=m*n ; i++) {
num+=findyin(i);
if(num>=k) return i;
}
return 0;
}
//查找x出现了几次
public int findyin(int x){
int ans=0;
for(int i=x/n;i<=m && i<=x;i++){
if(i==0) continue;
if(x%i==0 && x/i<=n) ans++;
}
return ans;
}
}
- 解法2:二分查找
class Solution {
public int findKthNumber(int m, int n, int k) {
int left=1,right=m*n;
while (left<right){
int x=(left+right)/2;
int count=x/n*n;
for (int i = x/n+1; i <= m; i++) {
count+=x/i;
if(x/i<1) break;
}
if(k<=count) right=x;
else left=x+1;
}
return left;
}
}