策略评估(Policy Evaluation)是强化学习中的一个核心概念,它主要涉及如何评估一个给定策略的好坏。
具体来说,策略评估的目标是估算在给定策略下,智能体从某一状态开始,能获得的期望回报。
策略评估的原理
1. 策略定义
在强化学习中,策略(Policy)是一个定义了智能体在每个状态下采取哪个动作的规则或函数。策略可以是确定性的,也可以是随机的。
- 确定性策略:给定状态下总是选择同一个动作。
- 随机策略:给定状态下动作的选择是根据某种概率分布进行的。
2. 价值函数
策略评估的核心在于计算价值函数(Value Function),即评估在特定策略下的状态价值。
-
状态价值函数 (
):表示在策略 (
) 下,从状态 (s) 开始,未来能获得的期望总回报。
-
动作价值函数 (
):表示在策略 (
) 下,从状态 (s) 开始,执行动作 (a),然后遵循策略 (
) 的情况下,能获得的期望总回报。
3. 贝尔曼方程
策略评估通常通过解决贝尔曼方程来实现。贝尔曼方程描述了价值函数与策略下的回报之间的关系。
对于状态价值函数 ( ),贝尔曼方程为: [
] 其中:
- ( ) 表示在状态 (s) 下选择动作 (a) 的期望。
- (
) 表示在状态 (s) 执行动作 (a) 后转移到状态 (s') 的期望。
- (
) 是从状态 (s) 执行动作 (a) 转移到状态 (s') 时的即时回报。
- (
) 是折扣因子,用于衡量未来回报的价值。
对于动作价值函数 ( Q^\pi(s, a) ),贝尔曼方程为: [ ]
4. 策略评估的过程
在实际应用中,策略评估的过程通常包括以下步骤:
- 初始化:初始设置状态价值函数 (
) 或动作价值函数 (
)。
- 迭代更新:使用贝尔曼方程对价值函数进行迭代更新。通过在每一步计算当前价值函数的期望回报来逐步改进估计。
- 收敛判断:当价值函数的变化小于某个阈值或达到预定的迭代次数时,停止迭代。此时,得到的价值函数即为在给定策略下的状态价值或动作价值的估计值。
总结
策略评估是强化学习中用于估算和优化策略的关键步骤。通过计算状态或动作的期望回报,智能体能够理解在给定策略下的长期表现,从而进一步改进和优化策略。