非线性方程求解

 (一)牛顿迭代法

又称为牛顿-雷夫生方法(Newton-Raphson method),是一种在实数域和复数域上通过迭代计算求出非线性方程的数值解方法。方法的基本思路是利用一个根的猜测值x0做初始近似值,使用函数f(x)在x0处的泰勒级数展式的前两项做为函数f(x)的近似表达式。由于该表达式是一个线性函数,通过线性表达式替代方程f(x)= 0中的f(x)求得近似解 x1。即将方程f(x)= 0在x0处局部线性化计算出近似解x1,重复这一过程,将方程f(x)= 0在x1处局部线性化计算出x2,求得近似解x2,……。

#include <iostream>
#include <math.h>
using namespace std;

double f(float x)
{
	return pow(x,6)-x-1;
}

double fdao(float x)
{
	return 6*pow(x,5)-1;
}

int main()
{
    int k;
    cout<<"请输入需要迭代的次数K"<<endl;;
	cin>>k;
	float e;
	cout<<"请输入给定的精度e"<<endl;
	cin>>e;
	double x[10];
	cout<<"请输入方程f(x)=0的一个根X0="<<endl;
	cin>>x[0];

	if(fdao(x[0])!=0)
	{
    	for(int i=1;i<=k;i++)
	    x[i]=x[i-1]-f(x[i-1])/fdao(x[i-1]);
	    cout<<" k      Xk        f(Xk)  "<<endl;
	    for(int i=0;i<=k;i++)
	    {  
	        printf("/n %d %10.8f %8.9e",i,x[i],f(x[i]));
		    if(fabs(x[i]-x[i-1])>=e)
		    {
			    cout<<"   精度不满足";
		    }
	    }
	}else
        cout<<"曲线y=f(x)与x轴平行,故方程无解。"<<endl;
	
    return 0;
}

 

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值