26日所学

泊松分布相关

1.伯努利分布

针对一个事件,结果只有两种,结果A发生的概率是p,结果B发生的概率就是1-p,例如:抛硬币,出现正面或反面的概率。

2.二项分布

结果只有2个的事件重复n次,问事件A发生的次数
p ( x = k ) = ( n x ) p k ( 1 − p ) ( n − k ) , k = 0 , 1 , 2 , . . . p(x=k)=\binom{n}{x}p^k(1-p)^{(n-k)},k=0,1,2,... p(x=k)=(xn)pk(1p)(nk),k=0,1,2,...

3.泊松分布

某时间段内事件发生的次数的概率,且任意相同时间内事件发生的概率相同,事件之间相互独立。例如一天内进入商场的人数
p ( x = k ) = λ k e − λ k ! , k = 0 , 1 , 2 , . . . p(x=k)=\frac{\lambda^ke^{-\lambda} }{k!},k=0,1,2,... p(x=k)=k!λkeλk=0,1,2,...

4.泊松分布与二项分布的关系

当二项分布的n很大趋于无穷大时且p(即成功的概率)很小时,二项分布的期望
当 n → ∞ 时 , n p → λ , 当n\rightarrow\infty时,np\rightarrow \lambda, n,npλ,
即有, lim ⁡ n → ∞ C n k p k ( 1 − p ) n − k = λ k e − λ k ! \lim_{n\rightarrow\infty}C_n^kp^k(1-p)^{n-k}=\frac{\lambda^ke^{-\lambda}}{k!} nlimCnkpk(1p)nk=k!λkeλ
所以,当二项分布中n很大,p很小时,可以用泊松分布来近似去求解。 C n k p k ( 1 − p ) n − k = ( n p ) k e − n p k ! C_n^kp^k(1-p)^{n-k}=\frac{(np)^ke^{-np}}{k!} Cnkpk(1p)nk=k!(np)kenp
n越大,p越小,近似效果越好
所以,泊松近似在处理大量罕见事件的情况下显得很自然。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值