POJ **** Dynamic Median (堆的应用)

本文介绍了一个使用两个堆(一个最大堆,一个最小堆)来维护动态中位数的数据结构。通过在log(n)时间内插入和删除元素,并在常数时间内获取中位数,满足题目要求。样例展示了数据结构的操作过程,包括插入、查询和删除中位数。
摘要由CSDN通过智能技术生成

题目链接:http://algorithm.openjudge.cn/betaexam/C/
总时间限制: 3000ms 内存限制: 65536kB

描述

设计一个数据结构,初始为空,支持以下操作:

(1)增加一个元素,要求在log(n)时间内完成,其中n是该数据结构中当前元素的个数。注意:数据结构中允许有重复的元素。

(2)返回当前元素集合的中位数,要求在常数时间内完成。如果当前元素的个数为偶数,那么返回下中位数(即两个中位数中较小的一个)。

(3)删除中位数,要求在log(n)时间内完成。

输入

输入的第一行是一个自然数T,代表测试数据的组数((1 ≤ T ≤ 600))。每组测试数据的第一行是个自然数N,代表操作的次数,1<=N<=10000。后面的N行中的每行代表一个操作,每次操作首先输入一个单字符代表操作的类型:

I表示插入,后面跟着输入一个正整数(这是唯一带有输入数值的操作)。
Q表示查询,输出当前的中位数(这是唯一产生输出的操作)。
D表示删除当前的中位数。

输入保证是正确的:查询时集合保证不为空(即中位数是存在的),删除时保证集合中有足够可供删除的元素。

输出

每次查询操作Q时输出的中位数,每次输出单独占一行。

样例输入

1
8
I 4
I 3
I 5
Q
D
I 10
I 2
Q

样例输出

4
3

提示

123

来源

课程

解题思路

题目要求插入和删除的时间复杂度都是log(n),说明必须要用树型数据结构了,考虑到每次只需要维护中位数,感觉上使用堆会比较合适。但是堆只能维护最大值或最小值,怎么用堆来维护中位数呢?答案是用两个堆,一个最大堆,一个最小堆,每次插入或删除元素的时候对两个堆进行调整,使得他们保持平衡状态,这样中位数就会在这两个堆顶元素里了。

AC代码

#include<bits/stdc++.h>
using namespace std;

int n,t;
priority_queue<int> lq;
priority_queue<int,vector<int>,greater<int> > rq;

void push_num(int x)
{
    if(lq.empty()){
        lq.push(x);
    }
    else{
        if(x>=lq.top()){
            rq.push(x);
        }
        else{
            lq.push(x);
        }
    }
    int tmp;
    while(lq.size()-1>rq.size()){
        tmp=lq.top();
        lq.pop();
        rq.push(tmp);
    }
    while(lq.size()<rq.size()){
        tmp=rq.top();
        rq.pop();
        lq.push(tmp);
    }
}

void showmid()
{
    printf("%d\n",lq.top());
}

void delmid()
{
    lq.pop();
    int tmp;
    while(lq.size()>rq.size()+1){
        tmp=lq.top();
        lq.pop();
        rq.push(tmp);
    }
    while(lq.size()<rq.size()){
        tmp=rq.top();
        rq.pop();
        lq.push(tmp);
    }
}

int main()
{
    int a;
    char c;
    scanf("%d",&t);
    while(t--){
        while(!lq.empty())    lq.pop();
        while(!rq.empty())    rq.pop();
        scanf("%d",&n);
        while(n--){
            scanf("%c",&c);
            scanf("%c",&c);
            if(c=='I'){
                scanf("%d",&a);
                push_num(a);
            }
            else if(c=='Q'){
                showmid();
            }
            else{
                delmid();
            }
        }
    }
    return 0;
}
这是一道比较经典的计数问题。题目描述如下: 给定一个 $n \times n$ 的网格图,其中一些格子被标记为障碍。一个连通块是指一些被标记为障碍的格子的集合,满足这些格子在网格图中连通。一个格子是连通的当且仅当它与另一个被标记为障碍的格子在网格图中有公共边。 现在,你需要计算在这个网格图中,有多少个不同的连通块,满足这个连通块的大小(即包含的格子数)恰好为 $k$。 这是一道比较经典的计数问题,一般可以通过计算生成函数的方法来解决。具体来说,我们可以定义一个生成函数 $F(x)$,其中 $[x^k]F(x)$ 表示大小为 $k$ 的连通块的个数。那么,我们可以考虑如何计算这个生成函数。 对于一个大小为 $k$ 的连通块,我们可以考虑它的形状。具体来说,我们可以考虑以该连通块的最左边、最上边的格子为起点,从上到下、从左到右遍历该连通块,把每个格子在该连通块中的相对位置记录下来。由于该连通块的大小为 $k$,因此这些相对位置一定是 $(x,y) \in [0,n-1]^2$ 中的 $k$ 个不同点。 现在,我们需要考虑如何计算这些点对应的连通块是否合法。具体来说,我们可以考虑从左到右、从上到下依次处理这些点,对于每个点 $(x,y)$,我们需要考虑它是否能够与左边的点和上边的点连通。具体来说,如果 $(x-1,y)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们就是连通的;同样,如果 $(x,y-1)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们也是连通的。如果 $(x,y)$ 与左边和上边的点都不连通,那么说明这个点不属于该连通块。 考虑到每个点最多只有两个方向需要检查,因此时间复杂度为 $O(n^2 k)$。不过,我们可以使用类似于矩阵乘法的思想,将这个过程优化到 $O(k^3)$ 的时间复杂度。 具体来说,我们可以设 $f_{i,j,k}$ 表示状态 $(i,j)$ 所代表的点在连通块中,且连通块的大小为 $k$ 的方案数。显然,对于一个合法的 $(i,j,k)$,我们可以考虑 $(i-1,j,k-1)$ 和 $(i,j-1,k-1)$ 这两个状态,然后把点 $(i,j)$ 加入到它们所代表的连通块中。因此,我们可以设计一个 $O(k^3)$ 的 DP 状态转移,计算 $f_{i,j,k}$。 具体来说,我们可以考虑枚举连通块所包含的最右边和最下边的格子的坐标 $(x,y)$,然后计算 $f_{x,y,k}$。对于一个合法的 $(x,y,k)$,我们可以考虑将 $(x,y)$ 所代表的点加入到 $(x-1,y,k-1)$ 和 $(x,y-1,k-1)$ 所代表的连通块中。不过,这里需要注意一个细节:如果 $(x-1,y)$ 和 $(x,y)$ 在网格图中没有相邻边,那么它们不能算作连通的。因此,我们需要特判这个情况。 最终,$f_{n,n,k}$ 就是大小为 $k$ 的连通块的个数,时间复杂度为 $O(n^2 k + k^3)$。 参考代码:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值