OpenJudge: Dynamic Median

本文介绍了一种数据结构设计,用于在log(n)时间内插入元素并能在常数时间内获取中位数,同时能在log(n)时间内删除中位数。该数据结构通过使用大根堆和小根堆来保持元素的平衡,确保中位数的快速访问和删除。在给定的样例输入中,展示了如何使用这个数据结构来处理一系列插入、查询和删除操作,并给出了相应的输出结果。
摘要由CSDN通过智能技术生成

总时间限制: 3000ms 内存限制: 65536kB

描述

设计一个数据结构,初始为空,支持以下操作:

(1)增加一个元素,要求在log(n)时间内完成,其中n是该数据结构中当前元素的个数。注意:数据结构中允许有重复的元素。

(2)返回当前元素集合的中位数,要求在常数时间内完成。如果当前元素的个数为偶数,那么返回下中位数(即两个中位数中较小的一个)。

(3)删除中位数,要求在log(n)时间内完成。

输入

输入的第一行是一个自然数T,代表测试数据的组数((1 ≤ T ≤ 600))。每组测试数据的第一行是个自然数N,代表操作的次数,1<=N<=10000。后面的N行中的每行代表一个操作,每次操作首先输入一个单字符代表操作的类型:

I表示插入,后面跟着输入一个正整数(这是唯一带有输入数值的操作)。
Q表示查询,输出当前的中位数(这是唯一产生输出的操作)。
D表示删除当前的中位数。

输入保证是正确的:查询时集合保证不为空(即中位数是存在的),删除时保证集合中有足够可供删除的元素。

输出

每次查询操作Q时输出的中位数,每次输出单独占一行。

样例输入

1
8
I 4
I 3
I 5
Q  
D
I 10
I 2
Q

样例输出

4
3

分析

方法:用大根堆维护前一半元素,用小根堆维护后一半元素。

  1. 本题输入数据量很大,用cin会超时。必须使用scanf/printf

  2. 需要注意,维护前一半元素的是大根堆(最大的在堆顶,也就是中位数在堆顶),后一半是小根堆

  3. 关于插入,只需要跟一个堆顶进行比较即可,不需要跟两个堆顶都比较

  4. 关于两个堆的平衡问题,建议将中位数维持在其中一个堆顶。按题目要求留在前一半即可。此时前一半元素个数最多比后一半元素数多一个

#include <algorithm>
#include <iostream>
#include <queue>
using namespace std;

struct DynamicMedian {
    priority_queue<int> little;
    priority_queue<int, vector<int>, greater<int>> large;

    void insert(int num) {
        if (little.empty()) {
            little.push(num);
            return;
        }
        if (num >= little.top()) {
            large.push(num);
            if (little.size() < large.size()) {
                little.push(large.top());
                large.pop();
            }
        } else {
            little.push(num);
            if (little.size() >= large.size() + 2) {
                large.push(little.top());
                little.pop();
            }
        }
    }
    int query() { return little.top(); }
    void del() {
        little.pop();
        if (little.size() < large.size()) {
            little.push(large.top());
            large.pop();
        }
    }
};

int main() {
#ifndef ONLINE_JUDGE
    freopen("in.txt", "r", stdin);
#endif
    int t = 0;
    scanf("%d", &t);
    while (t--) {
        DynamicMedian dm;
        int n = 0;
        scanf("%d", &n);
        char op;
        while (n--) {
            scanf("\n%c", &op);
            if (op == 'I') {
                int num = 0;
                scanf("%d", &num);
                dm.insert(num);
            } else if (op == 'Q') {
                printf("%d\n", dm.query());
            } else if (op == 'D') {
                dm.del();
            }
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值