看了大牛的代码才做出来的。。。由于a=c=1,故不妨让b为小的端点,d为大的端点。。。枚举[1,d]中每个i,看有多少个[1,min(i,b)]中的数与i互质。当i<=b时,可用欧拉函数直接求出b以内各数的欧拉值总和;当i>b时,就得用容斥定理(用dfs写较简洁),找出小于等于b的数中与i互质的数的个数(b减去与i不互质的数的个数)。
#include<stdio.h>
#include<stdlib.h>#include<string.h>
#include<math.h>
#define M 100005
#define ll long long
int a,b,c,d,k;
//欧拉函数+容斥原理,两数除以k后若互质,则说明其最大公约数为k
ll euler[M];
int prime[M][50],num[M];
void eulerPrime() //筛选法求每个数的欧拉值及其素因子
{
memset(num,0,sizeof(num));
int i,j;
euler[1]=1;
for(i=2;i<M;i++) euler[i]=i;
for(i=2;i<M;i++){
if(euler[i]==i){
for(j=i;j<M;j+=i){
euler[j]=euler[j]*(i-1)/i;
prime[j][num[j]++]=i;
}
}
euler[i]+=euler[i-1]; //欧拉值叠加
}
}
ll co_p(int x,int b,int p) //求不大于b的数中与p不互质的个数
{
ll res=0;
int i;
for(i=x;i<num[p];i++)
res+=b/prime[p][i]-co_p(i+1,b/prime[p][i],p);
return res;
}
int main()
{
int t,tmp,i,m=0;
ll sum;
eulerPrime();
scanf("%d",&t);
while(t--){
scanf("%d %d %d %d %d",&a,&b,&c,&d,&k);
sum=0;
if(k>0){
if(b>d){
tmp=d; d=b; b=tmp;
}
b/=k; d/=k;
sum+=euler[b];
for(i=b+1;i<=d;i++)
sum+=b-co_p(0,b,i);
}
printf("Case %d: %I64d\n",++m,sum);
}
//system("pause");
return 0;
}