hdu1695GCD(欧拉函数+容斥原理)

看了大牛的代码才做出来的。。。由于a=c=1,故不妨让b为小的端点,d为大的端点。。。枚举[1,d]中每个i,看有多少个[1,min(i,b)]中的数与i互质。当i<=b时,可用欧拉函数直接求出b以内各数的欧拉值总和;当i>b时,就得用容斥定理(用dfs写较简洁),找出小于等于b的数中与i互质的数的个数(b减去与i不互质的数的个数)。

#include<stdio.h>

#include<stdlib.h>
#include<string.h> 
#include<math.h>
#define M 100005 
#define ll long long 
int a,b,c,d,k;
//欧拉函数+容斥原理,两数除以k后若互质,则说明其最大公约数为k 
ll euler[M]; 
int prime[M][50],num[M];
void eulerPrime()  //筛选法求每个数的欧拉值及其素因子 
{
  memset(num,0,sizeof(num));     
  int i,j;
  euler[1]=1;
  for(i=2;i<M;i++)  euler[i]=i;
  for(i=2;i<M;i++){
    if(euler[i]==i){             
     for(j=i;j<M;j+=i){
       euler[j]=euler[j]*(i-1)/i;                  
       prime[j][num[j]++]=i;               
     }               
    }
    euler[i]+=euler[i-1];      //欧拉值叠加 
  }     

ll co_p(int x,int b,int p)  //求不大于b的数中与p不互质的个数 
{
  ll res=0;
  int i;
  for(i=x;i<num[p];i++)
    res+=b/prime[p][i]-co_p(i+1,b/prime[p][i],p);  
  return res; 

int main()        
{
 int t,tmp,i,m=0; 
 ll sum; 
 eulerPrime(); 
 scanf("%d",&t);
 while(t--){  
   scanf("%d %d %d %d %d",&a,&b,&c,&d,&k);
   sum=0;
   if(k>0){ 
     if(b>d){
       tmp=d;  d=b;   b=tmp;        
     } 
     b/=k;   d/=k;
     sum+=euler[b];
     for(i=b+1;i<=d;i++)
       sum+=b-co_p(0,b,i); 
   } 
   printf("Case %d: %I64d\n",++m,sum);    
 }
 //system("pause");
 return 0;    
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值