一.
在n*m的方格镇中,任意两点连线中穿过的点的个数(设第一个点(x1,y1)第二个点(x2,y2)):
gcd(abs(x1-x2),abs(y1-y2))-1;
比如(1,3)(2,4)穿过点的个数为gcd(1,1)-1=0个;
有的题不能遍历两个点,只能遍历一个点否则复杂度太高,这里因为线段是能平移的,我们把第一个点变为(0,0);
在乘以这个长度的线段在方格中的可以移动的点的数量就可以了。
题目描述
输入
输出
样例输入
2 2
样例输出
76
题解:
这题就是结论的应用
比如(0,0)(3,3)三点成线的方法数为(gcd(3,3)-1)*(n-3)*(m-3);
上图n=6+1=7,m=5+1=6;红色为可移动点的方案数;
代码:
#include<stdio.h>
#include<algorithm>
using namespace std;
long long Cn(long long m,long long n)
{
long long anser=m*(m-1)*(m-2)/(n*2);
return anser;
}
int main()
{
long long m,n;
while(~scanf("%lld%lld",&m,&n))
{
long long sum=0;
long long mm=m,nn=n;
long long m=max(mm,nn);
long long n=min(mm,nn);
m++;
n++;
sum=Cn(m*n,3)-m*Cn(n,3)-n*Cn(m,3);
long long o=0;
for(long long i=1; i<n; i++)
for(long long j=1; j<m; j++)
{
o+=(__gcd(i,j)-1)*(m-j)*(n-i);
}
printf("%lld\n",sum-2*o);
}
}
二.
定理 组合数 C(n,0)+C(n,1)+……..+C(n,n) =2^n 以此来计算第N个组合数所有可能之和
组合数模板:
C(n,m)= n! / m!*(n-m)!
预处理n(1e5)的阶乘
预处理m(1e5)阶乘的逆元
然后对所有组合数C(n,m) 直接计算分母(n!) × 逆元m!× 逆元(n-m)!
求一个数i的逆元(题里得有MOD存在)这个数是阶乘的话就是阶乘的逆元,用poww(i,MOD-2)%MOD;这个得在MOD很大的情况下使用。
转载自https://blog.csdn.net/kuronekonano/article/details/79648105LL poww(LL x, LL n)///快速幂
{
LL res = 1;
while(n)
{
if(n & 1) res =res*x%MOD;
x = x * x % MOD;
n >>= 1;
}
return res;
}
///组合数模板
LL p[100005],f[100005];///p为阶乘数组,f为阶乘的逆元
void init()///预处理
{
p[0]=1;
for (int i=1;i<=100000;++i)///计算阶乘
p[i]=p[i-1]*i%MOD;
f[0]=1;
for (int i=1;i<=100000;++i)///计算逆元
f[i]=poww(p[i],MOD-2);
return ;
}
LL comb(int n,int m)///计算组合数
{
return (f[m]*f[n-m])%MOD*p[n]%MOD;
}///分子----> n!
///分母----> m!*(n-m)! 计算逆元后相乘得到C(n,m)的组合数
int main()
{
LL k,n;
while(scanf("%lld%lld",&n,&k)!=EOF)
{
LL ans=1;
LL sum=poww(2,n);/// 组合数总和!!!C(n,0)+C(n,1)+......+C(n,n)=2^n
LL tmp=n;
for(int i=2;i<=k;i++)
{
ans=(ans+tmp)%MOD;
// printf("===%lld=====%lld\n",tmp,ans);
tmp=((tmp*(n-i+1))%MOD*poww(i,MOD-2))%MOD;///线性计算组合数,分子*n-i+1,分母*i
}
ans=(sum-ans+MOD)%MOD;///减法运算取模,加上MOD再对MOD取模
printf("%lld\n",ans);
}///因为题目中计算K到N(1e9) 的组合数计算会超时,因此利用n的组合数总和2^n减去从0到k-1的组合数之和(较短段),得到后半段k到n组合数之和(较长段)
}
//LL comb(LL n, LL m)///另一种组合数求法,在数塔中斜向求组合数
//{
// if(m > n) return 0;
// LL ret = 1;
// m = min(n - m, m);
// for(int i = 1; i <= m; i ++)
// {
// LL a = (n + i - m) % MOD;
// LL b = i % MOD;
// ret = ret * (a * mod_pow(b, MOD - 2) % MOD) % MOD;
// }
// sum=(sum%MOD+ret%MOD)%MOD;
//}
//
//LL Lucas(LL n, LL m)
//{
// if(m == 0) return 1;
// return comb(n % MOD, m % MOD) * Lucas(n / MOD, m / MOD) % MOD;
//}
题目:UPC6016
题目描述
众所周知,一个有着6个人的宿舍可以有7个微信群(^_^,别问我我也不知道为什么),然而事实上这个数字可以更大,因为每3个或者是更多的人都可以组建一个群,所以6个人最多可以组建42个不同的群。
现在,已知一间宿舍有N个人,并且每至少K个人都可以组建一个微信群,那么他们最多可以组建多少个不同的微信群?
输入
一行两个整数N和K,表示宿舍中的人数和最少能够组建微信群的人数
输出
一行一个整数,即最多能组建多少个不同的微信群,由于这个数字很大,请输出对10^9+7求余后的结果
样例输入
6 3
样例输出
42
提示
对于30%的数据,3<=N<=10^3
对于60%的数据,3<=N<=10^6
对于100%的数据,3<=N<=10^9,3<=K<=10^5
此处记住一个定理 组合数 C(n,0)+C(n,1)+……..+C(n,n) =2^n 以此来计算第N个组合数所有可能之和
组合数模板:
C(n,m)= n! / m!*(n-m)!
预处理n(1e5)的阶乘
预处理m(1e5)阶乘的逆元
然后对所有组合数C(n,m) 直接计算分母(n!) × 逆元m!× 逆元(n-m)!
对于此题中,要求从C(n,k)的组合数求和到C(n,n),直接用组合数模板然后for循环求和会超时,因为会有可能从3遍历到1e9
因为k只到1e5,因此可以利用组合数 总和 2^n 减去前半段0 ~ k-1较短的遍历求出总和,得到ans,后半段的组合数总和
根据组合数n的规律,对于C(n,i) i=0~k-1 可以根据当前值递推出i+1的组合数,将当前值 乘 (n-i+1) 也就是当前分母-1,分子 乘 i 即可得到下一个组合数的值。
这样可以以线性复杂度得到一个组合数N的所有组合值。
#include<stdio.h>
#include<algorithm>
#define LL long long
using namespace std;
const LL MOD=1e9+7;
LL poww(LL x, LL n)///快速幂
{
LL res = 1;
while(n)
{
if(n & 1) res =res*x%MOD;
x = x * x % MOD;
n >>= 1;
}
return res;
}
///组合数模板
LL p[100005],f[100005];///p为阶乘数组,f为阶乘的逆元
void init()///预处理
{
p[0]=1;
for (int i=1;i<=100000;++i)///计算阶乘
p[i]=p[i-1]*i%MOD;
f[0]=1;
for (int i=1;i<=100000;++i)///计算逆元
f[i]=poww(p[i],MOD-2);
return ;
}
LL comb(int n,int m)///计算组合数
{
return (f[m]*f[n-m])%MOD*p[n]%MOD;
}///分子----> n!
///分母----> m!*(n-m)! 计算逆元后相乘得到C(n,m)的组合数
int main()
{
LL k,n;
while(scanf("%lld%lld",&n,&k)!=EOF)
{
LL ans=1;
LL sum=poww(2,n);/// 组合数总和!!!C(n,0)+C(n,1)+......+C(n,n)=2^n
LL tmp=n;
for(int i=2;i<=k;i++)
{
ans=(ans+tmp)%MOD;
// printf("===%lld=====%lld\n",tmp,ans);
tmp=((tmp*(n-i+1))%MOD*poww(i,MOD-2))%MOD;///线性计算组合数,分子*n-i+1,分母*i
}
ans=(sum-ans+MOD)%MOD;///减法运算取模,加上MOD再对MOD取模
printf("%lld\n",ans);
}///因为题目中计算K到N(1e9) 的组合数计算会超时,因此利用n的组合数总和2^n减去从0到k-1的组合数之和(较短段),得到后半段k到n组合数之和(较长段)
}
//LL comb(LL n, LL m)///另一种组合数求法,在数塔中斜向求组合数
//{
// if(m > n) return 0;
// LL ret = 1;
// m = min(n - m, m);
// for(int i = 1; i <= m; i ++)
// {
// LL a = (n + i - m) % MOD;
// LL b = i % MOD;
// ret = ret * (a * mod_pow(b, MOD - 2) % MOD) % MOD;
// }
// sum=(sum%MOD+ret%MOD)%MOD;
//}
//
//LL Lucas(LL n, LL m)
//{
// if(m == 0) return 1;
// return comb(n % MOD, m % MOD) * Lucas(n / MOD, m / MOD) % MOD;
//}
三.
O(n)求逆元
前几天在看 lucas 定理的时候发现要求 1, 2,⋯,p−1modp1, 2,⋯,p−1modp 的逆元,看到了一个 Θ(n)Θ(n) 的
这个做法实际上是这样的,首先 1−1≡1(modp)1−1≡1(modp)
然后我们设 p=k⋅i+r, r<i, 1<i<pp=k⋅i+r, r<i, 1<i<p
再将这个式子放到modpmodp 意义下就会得到
两边同时乘上 i−1⋅r−1i−1⋅r−1 就会得到
于是就可以从前面推出当前的逆元了,代码也就一行
1
|
A
[
i
]
=
-
(
p
/
i
)
*
A
[
p
%
i
]
;
|