有向无环图最长路

  是昨天校内测的一题,听说也是cf上的一道原题,题意大致是说,有一个N*M的矩阵每个位置都有有一个正整数,需要你在保持每个数在其所在行列大小关系不变的情况下把图的的数缩小,并且每个数仍旧是正整数,问最小的图是长啥样的。

  数据范围 0≤Aij≤10^9 0≤N*M≤10^6   

  很明显这是一个有向无环图的最长路问题,讲道理就是拓扑排序,然而那时候有点犯浑,写好之后出了小问题,愣是写了spfa刷最长路,10^6强行跑,还觉得能过得。。最后TLE三个点直播尴尬,这道题还存在一个问题就是相同点的连边,注意到了怎么处理都可以,建议并查集,如果是刷spfa之类的也可以把相同点连双向边,不过要注意边数的大小。

 贴代码↓

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef pair<int,int> node;
const int maxv=1000010;
int map[maxv],fa[maxv],lk[maxv],nextt[maxv<<1],son[maxv<<1],tot,D[maxv],V[maxv],n,m,que[maxv],head,tail;
node temp[maxv];
int g(const int &x,const int &y) {
	return (x-1)*m+y;
}
int getfather(int x){
	return fa[x]==x?x:fa[x]=getfather(fa[x]);
}
void merge(int x,int y){
	int fx=getfather(x),fy=getfather(y);
	if (fx!=fy) fa[fx]=fy;
}
void add(int x,int y){
nextt[++tot]=lk[x];lk[x]=tot;son[tot]=y;
}
int main(){
	freopen("compression.in","r",stdin);
	freopen("compression.out","w",stdout);
	scanf("%d%d",&n,&m);
	for (int i=1;i<=n;i++)
		for (int j=1;j<=m;j++) scanf("%d",&map[g(i,j)]);
	for (int i=1;i<=n*m;i++) fa[i]=i;
	for (int i=1;i<=n;i++){
		for (int j=1;j<=m;j++) temp[j].first=map[g(i,j)],temp[j].second=j;
		sort(temp+1,temp+1+m);
		for (int j=1;j<m;j++) if (temp[j].first==temp[j+1].first) merge(g(i,temp[j].second),g(i,temp[j+1].second));
	}
	for (int i=1;i<=m;i++){
		for (int j=1;j<=n;j++) temp[j].first=map[g(j,i)],temp[j].second=j;
		sort(temp+1,temp+1+n);
		for (int j=1;j<n;j++) if (temp[j].first==temp[j+1].first) merge(g(temp[j].second,i),g(temp[j+1].second,i));
	}
	for (int i=1;i<=n;i++){
		for (int j=1;j<=m;j++) temp[j].first=map[g(i,j)],temp[j].second=j;
		sort(temp+1,temp+1+m);
		for (int j=1;j<m;j++) if (temp[j].first<temp[j+1].first) add(getfather(g(i,temp[j].second)),getfather(g(i,temp[j+1].second)));
	}
	for (int i=1;i<=m;i++){
		for (int j=1;j<=n;j++) temp[j].first=map[g(j,i)],temp[j].second=j;
		sort(temp+1,temp+1+n);
		for (int j=1;j<n;j++) if (temp[j].first<temp[j+1].first) add(getfather(g(temp[j].second,i)),getfather(g(temp[j+1].second,i)));
	}
	for (int i=1;i<=tot;i++) D[son[i]]++;
	for (int i=1;i<=n*m;i++) if (getfather(i)==i && D[i]==0) que[++tail]=i,V[i]=1;
	while (head<tail){
		int x=que[++head];
		for (int i=lk[x];i;i=nextt[i]){
			V[son[i]]=max(V[son[i]],V[x]+1);
			D[son[i]]--;
			if (D[son[i]]==0) que[++tail]=son[i];
		}
	}
	for (int i=1;i<=n;i++){
		for (int j=1;j<=m;j++) printf("%d ",V[getfather(g(i,j))]);
		printf("\n");
	}
	return 0;
}

【写的有漏洞的,欢迎路过大神吐槽】

  2016-11-7 20:11:50

 Ending.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值