文章目录
在我们一般的图像数据的采集场景中,得到的大多是二维图像。比如手机拍照,所以大多数深度学习网络的雏形都是基于二维图像展开的工作。
但是,在某些场景下,比如医学影像CT数据,监控场景连续拍摄的视频和自动驾驶使用到的激光点云等等,多是连续的、多层的、有深度信息的数据。
此时,层内的信息,和层与层之间的层间深度信息,也是一个重要的特征信息。所以,实现三维的目标分类任务,也是必不可少的。想想很复杂,但是动手实操了,才能理解其中的内容。
本文就对三维图像分类任务展开介绍,主要是自己的实战记录过程。包括:
- 3维网络构建部分
- 3维数据构建部分
- 训练和测试
- 对基础部分进行修改,提高性能
下面一点点的进行详述。完整的代码和数据样例和处理生成方式,都放到这个链接了,自己去下载:基于Pytorch的3D立体图像分类完整代码和LIDC结节分叶征数据集
只是下载处理后的数据样例,可以去这里: