【3D图像分割】基于 Pytorch 的 3D 图像分割3(3D UNet 模型篇)

在本文中,主要是对3D UNet 进行一个学习和梳理。对于3D UNet 网上的资料和GitHub直接获取的代码很多,不需要自己从0开始。那么本文的目的是啥呢?

本文就是想拆解下其中的结构,看看对于一个3DUNet,和2DUNet,究竟有什么不同?如果是你自己构建,有什么样的经验和技巧可以学习。

3DUNet的论文地址:3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation

对于2DUNet感兴趣的小伙伴,可以先跳转去这里:【BraTS】Brain Tumor Segmentation 脑部肿瘤分割2(UNet的复现);相信阅读完,你会对这个模型,心中已经有了结构。

对本系列的其他篇章,点击下面👇链接:

一、 3D UNet 结构剖析

unet无论是2D,还是3D,从整体结构上进行划分,大体可以分位以下两个阶段:

  1. 下采样的阶段,也就是U的左边(encoder),负责对特征提取;
  2. 上采样的阶段,也就是U的右边(decoder),负责对预测恢复。

如下图展示的这样:
1

其中:

  • 蓝色框表示的是特征图;
  • 绿色长箭头,是concat操作;
  • 橘色三角,是conv+bn+relu的组合;
  • 红色的向下箭头,是max pool
  • 黄色的向上箭头,是up conv
  • 最后的紫色三角,是conv,恢复了最终的输出特征图;

对于模型构建这块,可以在论文中,看看作者是如何描述网络结构的:

  1. Like the standard u-net, it has an analysis and a synthesis path each with four resolution steps.
  2. In the analysis path, each layer contains two 3 × 3 × 3 convolutions each followed by a rectified linear unit (ReLu), and then a 2 × 2 × 2 max pooling with strides of two in each dimension.
  3. In the synthesis path, each layer consists of an upconvolution of 2 × 2 × 2 by strides of two in each dimension, followed by two 3 × 3 × 3 convolutions each followed by a ReLu.
  4. Shortcut connections from layers of equal resolution in the analysis path provide the essential high-resolution features to the synthesis path.
  5. In the last layer a 1×1×1 convolution reduces the number of output channels to the number of labels which is 3 in our case.

从论文中的网络结构示意图也可以发现:

  1. 水平看,每一个小块,基本都是三个特征图,最后一层除外;
  2. 水平看,每个特征图之间,都是橘色三角,是conv+bn+relu的组合,最后一层除外;
  3. encoder阶段,连接各个水平块的,是下采样;
  4. decoder阶段,连接各个水平块的,是反卷积(upconvolution);
  5. 还有就是绿色长箭头的concat,和最后的conv输出特征图。

二、 3D UNet 复现

复线在3D UNet前,可以先参照下相对简单,且很深渊源的2D UNet结构。其中被多次使用的一个水平块中,也是两个conv+bn+relu的组合,2D UNet的构建如下所示:

class ConvBlock2d(nn.Module):
    def __init__(self, in_ch, out_ch):
        super(ConvBlock2d, self).__init__()

        # 第1个3*3的卷积层
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(out_ch),
            nn.ReLU(inplace=True),
        )

        # 第2个3*3的卷积层
        self.conv2 = nn.Sequential(
            nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(out_ch),
            nn.ReLU(inplace=True),
        )

    # 定义数据前向流动形式
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        return x

而在3D UNet的一个水平块中,同样是两个conv+bn+relu的组合,如下所示:

is_elu = False
def activateELU(is_elu, nchan):
    if is_elu:
        return nn.ELU(inplace=True)
    else:
        return nn.PReLU(nchan)

def ConvBnActivate(in_channels, middle_channels, out_channels):
    # This is a block with 2 convolutions
    # The first convolution goes from in_channels to middle_channels feature maps
    # The second convolution goes from middle_channels to out_channels feature maps
    conv = nn.Sequential(
        nn.Conv3d(in_channels, middle_channels, stride=1, kernel_size=3, padding=1),
        nn.BatchNorm3d(middle_channels),
        activateELU(is_elu, middle_channels),

        nn.Conv3d(middle_channels, out_channels, stride=1, kernel_size=3, padding=1),
        nn.BatchNorm3d(out_channels),
        activateELU(is_elu, out_channels),
    )
    return conv

2.1、模块搭建

可以发现,nn.Conv2d变成了nn.Conv3dnn.BatchNorm2d变成了nn.BatchNorm3d。遵照这个规则,构建下采样MaxPool3d、上采样反卷积ConvTranspose3d,以及最后紫色一层卷积,输出特征层FinalConvolution,如下:

def DownSample():
    # It halves the spatial dimensions on every axes (x,y,z)
    return nn.MaxPool3d(kernel_size=2, stride=2)

def UpSample(in_channels, out_channels):
    # It doubles the spatial dimensions on every axes (x,y,z)
    return nn.ConvTranspose3d(in_channels, out_channels, kernel_size=2, stride=2)

def FinalConvolution(in_channels, out_channels):
    return nn.Conv3d(in_channels, out_channels, kernel_size=1)

除此之外,绿色长箭头,concat操作,是在水平方向上,也就是列上进行组合,如下所示:

def CatBlock(x1, x2):
    return torch.cat((x1, x2), 1)

至此,构建模型所需要的各个组块,都准备完毕了。接下来就是构建模型,将各个组块搭起来。其中有个规律:

  • encoder中第一conv+bn+relu外,每一次前都需要下采样;
  • decoder中,每一个conv+bn+relu前,都需要上采样;
  • 并且,decoder中第一个conv操作,需要进行concat操作;
  • DownSamplechannel不变,特征图尺寸变小;
  • UpSamplechannel不变,特征图尺寸变大;

那就把这些规则,根据图示给加上,组合后的一个类,就如下所示:

class UNet3D(nn.Module):
    def __init__(self, num_out_classes=2, input_channels=1, init_feat_channels=32, testing=False):
        super().__init__()

        self.testing = testing

        # Encoder layers definitions
        self.down_sample = DownSample()

        self.init_conv = ConvBnActivate(input_channels, init_feat_channels, init_feat_channels*2)
        self.down_conv1 = ConvBnActivate(init_feat_channels*2, init_feat_channels*2, init_feat_channels*4)
        self.down_conv2 = ConvBnActivate(init_feat_channels*4, init_feat_channels*4, init_feat_channels*8)
        self.down_conv3 = ConvBnActivate(init_feat_channels*8, init_feat_channels*8, init_feat_channels*16)

        # Decoder layers definitions
        self.up_sample1 = UpSample(init_feat_channels*16, init_feat_channels*16)
        self.up_conv1   = ConvBnActivate(init_feat_channels*(16+8), init_feat_channels*8, init_feat_channels*8)

        self.up_sample2 = UpSample(init_feat_channels*8, init_feat_channels*8)
        self.up_conv2   = ConvBnActivate(init_feat_channels*(8+4), init_feat_channels*4, init_feat_channels*4)

        self.up_sample3 = UpSample(init_feat_channels*4, init_feat_channels*4)
        self.up_conv3   = ConvBnActivate(init_feat_channels*(4+2), init_feat_channels*2, init_feat_channels*2)

        self.final_conv = FinalConvolution(init_feat_channels*2, num_out_classes)

        # Softmax
        self.softmax = nn.Softmax(dim=1)    # 多分类问题用soft-max函数作为输出
        self.sigmoid = nn.Sigmoid()         # 二分类问题用sigmoid函数作为输出,二分类下和softmax等价

    def forward(self, image):
        # Encoder Part #
        # B x  1 x Z x Y x X
        layer_init = self.init_conv(image)

        # B x 64 x Z x Y x X
        max_pool1  = self.down_sample(layer_init)
        # B x 64 x Z//2 x Y//2 x X//2
        layer_down2 = self.down_conv1(max_pool1)

        # B x 128 x Z//2 x Y//2 x X//2
        max_pool2   = self.down_sample(layer_down2)
        # B x 128 x Z//4 x Y//4 x X//4
        layer_down3 = self.down_conv2(max_pool2)

        # B x 256 x Z//4 x Y//4 x X//4
        max_pool_3  = self.down_sample(layer_down3)
        # B x 256 x Z//8 x Y//8 x X//8
        layer_down4 = self.down_conv3(max_pool_3)
        # B x 512 x Z//8 x Y//8 x X//8

        # Decoder part #
        layer_up1 = self.up_sample1(layer_down4)
        # B x 512 x Z//4 x Y//4 x X//4
        cat_block1 = CatBlock(layer_down3, layer_up1)
        # B x (256+512) x Z//4 x Y//4 x X//4
        layer_conv_up1 = self.up_conv1(cat_block1)
        # B x 256 x Z//4 x Y//4 x X//4

        layer_up2 = self.up_sample2(layer_conv_up1)
        # B x 256 x Z//2 x Y//2 x X//2
        cat_block2 = CatBlock(layer_down2, layer_up2)
        # B x (128+256) x Z//2 x Y//2 x X//2
        layer_conv_up2 = self.up_conv2(cat_block2)
        # B x 128 x Z//2 x Y//2 x X//2

        layer_up3 = self.up_sample3(layer_conv_up2)
        # B x 128 x Z x Y x X
        cat_block3 = CatBlock(layer_init, layer_up3)
        # B x (64+128) x Z x Y x X
        layer_conv_up3 = self.up_conv3(cat_block3)

        # B x 64 x Z x Y x X
        final_layer = self.final_conv(layer_conv_up3)
        # B x 2 x Z x Y x X
        if self.testing:
            final_layer = self.sigmoid(final_layer)

        return final_layer

2.2、模型初测

定义好了模型还不算完,分阶段测试下构建的网络是不是和我们所预想的一样。我们给他一个输入,测试下是否与我们最初的想法是一致的,是否报错等等问题,如下这样:

DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")  # 没gpu就用cpu
print(DEVICE)

# Tensors for 3D Image Processing in PyTorch
# Batch x Channel x Z x Y x X
# Batch size BY x Number of channels x (BY Z dim) x (BY Y dim) x (BY X dim)

if __name__ == '__main__':
    from torchsummary import summary

    model = UNet3D(num_out_classes=3, input_channels=3, init_feat_channels=32)
    # print(model)
    summary(model, input_size=(3, 128, 128, 64), batch_size=-1, device='cpu')

打印的内容如下:

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv3d-1     [-1, 32, 128, 128, 64]           2,624
       BatchNorm3d-2     [-1, 32, 128, 128, 64]              64
             PReLU-3     [-1, 32, 128, 128, 64]              32
            Conv3d-4     [-1, 64, 128, 128, 64]          55,360
       BatchNorm3d-5     [-1, 64, 128, 128, 64]             128
             PReLU-6     [-1, 64, 128, 128, 64]              64
         MaxPool3d-7       [-1, 64, 64, 64, 32]               0
            Conv3d-8       [-1, 64, 64, 64, 32]         110,656
       BatchNorm3d-9       [-1, 64, 64, 64, 32]             128
            PReLU-10       [-1, 64, 64, 64, 32]              64
           Conv3d-11      [-1, 128, 64, 64, 32]         221,312
      BatchNorm3d-12      [-1, 128, 64, 64, 32]             256
            PReLU-13      [-1, 128, 64, 64, 32]             128
        MaxPool3d-14      [-1, 128, 32, 32, 16]               0
           Conv3d-15      [-1, 128, 32, 32, 16]         442,496
      BatchNorm3d-16      [-1, 128, 32, 32, 16]             256
            PReLU-17      [-1, 128, 32, 32, 16]             128
           Conv3d-18      [-1, 256, 32, 32, 16]         884,992
      BatchNorm3d-19      [-1, 256, 32, 32, 16]             512
            PReLU-20      [-1, 256, 32, 32, 16]             256
        MaxPool3d-21       [-1, 256, 16, 16, 8]               0
           Conv3d-22       [-1, 256, 16, 16, 8]       1,769,728
      BatchNorm3d-23       [-1, 256, 16, 16, 8]             512
            PReLU-24       [-1, 256, 16, 16, 8]             256
           Conv3d-25       [-1, 512, 16, 16, 8]       3,539,456
      BatchNorm3d-26       [-1, 512, 16, 16, 8]           1,024
            PReLU-27       [-1, 512, 16, 16, 8]             512
  ConvTranspose3d-28      [-1, 512, 32, 32, 16]       2,097,664
           Conv3d-29      [-1, 256, 32, 32, 16]       5,308,672
      BatchNorm3d-30      [-1, 256, 32, 32, 16]             512
            PReLU-31      [-1, 256, 32, 32, 16]             256
           Conv3d-32      [-1, 256, 32, 32, 16]       1,769,728
      BatchNorm3d-33      [-1, 256, 32, 32, 16]             512
            PReLU-34      [-1, 256, 32, 32, 16]             256
  ConvTranspose3d-35      [-1, 256, 64, 64, 32]         524,544
           Conv3d-36      [-1, 128, 64, 64, 32]       1,327,232
      BatchNorm3d-37      [-1, 128, 64, 64, 32]             256
            PReLU-38      [-1, 128, 64, 64, 32]             128
           Conv3d-39      [-1, 128, 64, 64, 32]         442,496
      BatchNorm3d-40      [-1, 128, 64, 64, 32]             256
            PReLU-41      [-1, 128, 64, 64, 32]             128
  ConvTranspose3d-42    [-1, 128, 128, 128, 64]         131,200
           Conv3d-43     [-1, 64, 128, 128, 64]         331,840
      BatchNorm3d-44     [-1, 64, 128, 128, 64]             128
            PReLU-45     [-1, 64, 128, 128, 64]              64
           Conv3d-46     [-1, 64, 128, 128, 64]         110,656
      BatchNorm3d-47     [-1, 64, 128, 128, 64]             128
            PReLU-48     [-1, 64, 128, 128, 64]              64
           Conv3d-49      [-1, 3, 128, 128, 64]             195
================================================================
Total params: 19,077,859
Trainable params: 19,077,859
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 12.00
Forward/backward pass size (MB): 8544.00
Params size (MB): 72.78
Estimated Total Size (MB): 8628.78
----------------------------------------------------------------

其中,我们测试的参数量是19,077,859,论文中说的参数量:The architecture has 19069955 parameters in total. 有略微的差别。

后面再调用模型,进行一次前向传播,loss运算和反向回归。如果这里都通过了,那么后面构建训练代码,就更简单了很多。如下:

if __name__ == '__main__':
    input_channels = 3
    num_out_classes = 2
    init_feat_channels = 32

    batch_size = 4
    model = UNet3D(num_out_classes=num_out_classes, input_channels=input_channels, init_feat_channels=init_feat_channels)

    # B x C x Z x Y x X
    # 4 x 1 x 64 x 64 x 64

    input_batch_size = (batch_size, input_channels, 128, 128, 64)
    input_example = torch.rand(input_batch_size)

    unet = model.to(DEVICE)
    input_example = input_example.to(DEVICE)
    output = unet(input_example)
    # output = output.cpu().detach().numpy()
    # Expected output shape
    # B x N x Z x Y x X
    # 4 x 2 x 64 x 64 x 64
    expected_output_shape = (batch_size, num_out_classes, 128, 128, 64)
    print("Output shape = {}".format(output.shape))
    assert output.shape == expected_output_shape, "Unexpected output shape, check the architecture!"

    expected_gt_shape = (batch_size, 128, 128, 64)
    ground_truth = torch.ones(expected_gt_shape)
    ground_truth = ground_truth.long().to(DEVICE)

    # Defining loss fn
    ce_layer = torch.nn.CrossEntropyLoss()
    # Calculating loss
    ce_loss = ce_layer(output, ground_truth)
    print("CE Loss = {}".format(ce_loss))
    # Back propagation
    ce_loss.backward()

输出内容如下:

Output shape = torch.Size([4, 2, 128, 128, 64])
CE Loss = 0.6823387145996094

2.3、疑问汇总

GitHub上,一篇关于3D UNet的仓库,获得了1.6k 星星。链接地址在这里:pytorch-3dunet

在这个GitHub里面,增加了很多的注释,也带来了一些心中的疑惑。

2.3.1、什么时候使用softmax?什么时候使用sigmoid

选择使用softmaxsigmoid作为输出层的依据取决于您的任务类型和具体情况。

  • 如果您的任务是对每个像素进行多类别分类(语义分割),例如图像分割任务,那么您可以使用softmax作为输出层。softmax将为每个像素分配一个概率分布,表示该像素属于每个类别的概率,这样可以确保每个像素的预测结果归一化,并且所有通道的概率之和为1。这种方法通常用于分割器官或病变等结构。

  • 如果您的任务是对每个像素进行二元分类,例如肿瘤检测任务,那么您可以使用sigmoid作为输出层。sigmoid将为每个像素分配一个0到1之间的值,表示该像素属于正类的概率。这种方法通常用于检测二元结构,如肿瘤。但是,二元分类任务,使用softmax也是可以的。

总之,选择哪种输出层取决于您的任务类型和具体情况。

2.3.2、训练阶段是不需要softmax/sigmoid?只在推理阶段使用呢?

if True applies the final normalization layer (sigmoid or softmax), otherwise the networks returns the output from the final convolution layer; use False for regression problems, e.g. de-noising

  • 在训练阶段,输出层的特征图通常不需要经过sigmoidsoftmax函数处理,因为在计算损失函数时,通常会使用原始的特征图和标签图进行比较。

  • 在推理阶段,输出层的特征图需要经过sigmoidsoftmax函数处理,以将特征图转换为像素级别的预测结果。对于分割一个类别的任务,您可以使用sigmoid函数将特征图转换为像素级别的二进制掩码,表示每个像素属于结节的概率。对于分割多个类别的任务,您可以使用softmax函数将特征图转换为像素级别的类别标签。

因此,在推理阶段,您需要将输出层的特征图通过sigmoidsoftmax函数进行处理,以获得像素级别的预测结果。

在上面的GitHub有个训练的提示,如下这样:

  1. Training loss shape of target

    • When training with binary-based losses, i.e.: BCEWithLogitsLoss, DiceLoss, BCEDiceLoss, GeneralizedDiceLoss: The target data has to be 4D (one target binary mask per channel).
    • When training with WeightedCrossEntropyLoss, CrossEntropyLoss, PixelWiseCrossEntropyLoss the target dataset has to be 3D, see also pytorch documentation for CE loss: https://pytorch.org/docs/master/generated/torch.nn.CrossEntropyLoss.html
  2. final_sigmoid in the model config section applies only to the inference time (validation, test):

    • When training with BCEWithLogitsLoss, DiceLoss, BCEDiceLoss, GeneralizedDiceLoss set final_sigmoid=True;
    • When training with cross entropy based losses (WeightedCrossEntropyLoss, CrossEntropyLoss, PixelWiseCrossEntropyLoss) set final_sigmoid=False ,so that Softmax normalization is applied to the output.

2.3.3、在训练阶段,真的不可以加入sigmoid或softmax吗?

万事没有一个太绝对了。在训练阶段使用了sigmoidsoftmax也是可以的,以获得类似于推理阶段的预测结果。这种方法称为“软标签”,可以帮助模型更好地学习特征和提高分割结果的质量。(因为sigmoidsoftmax类似于一个规范化层,可以降低提高收敛效率)

使用软标签时,您需要将每个像素的标签从硬标签(0或1)转换为概率分布。对于分割一个类别的任务,您可以使用sigmoid函数将标签转换为0到1之间的值,表示该像素属于结节的概率。对于分割多个类别的任务,您可以使用softmax函数将标签转换为每个类别的概率分布。

请注意,使用软标签会增加模型的训练难度和计算复杂度。因此,

  1. 如果您的数据集足够大且质量良好,您可以不使用软标签来训练模型,也就是训练阶段不使用sigmoidsoftmax
  2. 但是如果您的数据集较小或存在噪声数据,使用软标签可能会提高模型的性能和分割结果的质量。也就是训练阶段使用sigmoidsoftmax

在论文:3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation,论文中第3.2章节介绍了如何使用软标签。

1

2.3.4、out_channels 的数量,要不要加背景层?

out_channels (int): number of output segmentation masks; Note that the of out_channels might correspond to either different semantic classes or to different binary segmentation mask.
It’s up to the user of the class to interpret the out_channels and use the proper loss criterion during training (i.e. CrossEntropyLoss (multi-class) or BCEWithLogitsLoss (two-class) respectively)

我的理解是,有多少个目标类,out_channels 就是多少,不需要加背景类。但是,我也看到就只有一个类别,但是做了加1操作的。这点我再了解下。如果你有什么心得,欢迎评论区交流。

三、总结

UNet网络的结构,无论是二维的,还是三维的,都是比较容易理解的,这可能也是为什么那么受欢迎的原因之一吧。如果你看过之前那篇关于2D UNet的过程,再看本篇应该就简单的很多。觉得本篇更简单一些呢。

我觉得本篇最大的价值,就是:

  1. 逐模块的分析了结构;
  2. 对后续的模型构建提供了思路;
  3. 构建完模型需要先预测试,两种方式可选;
  4. 对模型的优势和劣势,分析。

如果你阅读的过程中,发现了问题和疑问,欢迎评论区交流。


最后,如果您觉得本篇文章对你有帮助,欢迎点赞 👍,让更多人看到,这是对我继续写下去的鼓励。如果能再点击下方的红包打赏,给博主来一杯咖啡,那就太好了。💪

  • 11
    点赞
  • 61
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 3DUNet是一种用于通过深度学习分割3D医学图像的神经网络模型,它使用了UNET3D卷积技术,采用PyTorch进行实现。其主要应用于MRI、CT等医学图像的分割任务中。 3DUNet采用了类似于Encoder-Decoder的结构,网络由一个下采样的卷积模块和一个上采样的反卷积模块组成。在下采样模块中,使用3D卷积和池化等技术来提取特征,并将分辨率逐渐减小;在上采样模块中,则使用反卷积和跳跃连接技术来进行卷积和特征融合,以恢复分辨率并得出最终的分割结果。 3DUNet在医学图像分割方面表现出色,其预测结果具有更好的空间一致性和解剖学意义,并且能够提高医学影像分析的自动化水平和准确性。而PyTorch的实现则使得该神经网络模型具有快速训练、高效调试等优点。 ### 回答2: 3DUNet是一种用于医学图像分割的深度学习模型,其基本结构是由U-Net改进而来。在3DUNet中,U-Net的Encoder下采样过程改为了3D卷积,Decoder上采样过程也同样采用了3D卷积,从而使得3DUNet具有更好的空间特征表示能力。同时,3DUNet还采用了Residual Learning方案和深度幅度调制(Depthwise Separable Convolution)技术,进一步提升了模型的性能。 在PyTorch中,可以使用3DUNet包来实现3DUNet模型。该包中包含了3D卷积、Residual Learning方案和深度幅度调制技术的实现,可以提高模型的训练效率和准确率。使用该包时,可以将需要分割的医学图像作为输入,经过预处理后输入3DUNet模型中,得到分割结果。 3DUNet在医学图像分割任务中有着广泛的应用,例如在肺癌、脑部疾病等方面都有着良好的效果。同时,3DUNet模型也具有很好的扩展性,可以根据应用情况对模型结构进行调整,进一步提升模型性能。总之,3DUNet模型在医学图像分割中有着广泛的潜在应用,具有良好的发展前景。 ### 回答3: 3DUNet是一种用于医学图像分割的卷积神经网络模型,它的PyTorch实现被称为3dunet pytorch。这个模型被广泛地应用于MRI和CT等医学图像的分割任务中。 3DUNet模型使用三维卷积层来学习特征,并且使用深度可分离卷积来减少计算量。这使得模型在处理大规模医学图像数据时能够更加高效。 模型的损失函数是由两部分组成的:交叉熵损失和Dice系数损失。这两个损失函数都考虑了预测结果的准确性和分割的完整性,因此可以有效地评估3DUNet模型的性能。 在应用3dunet pytorch进行医学图像分割时,我们首先要对数据进行预处理,包括归一化和数据增强等操作。接着,我们可以使用3dunet pytorch对数据进行训练,并且使用训练好的模型对新的医学图像进行自动分割。 总的来说,3dunet pytorch是一种非常强大的医学图像分割工具,它能够快速而准确地对大规模医学图像数据进行分割。尤其是在医学领域中,这种工具可以在诊断和治疗中发挥重要的作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钱多多先森

你的鼓励,是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值