unet图片数据增强_(18)图像分割——3D U-Net

在生物医学方面,有很多3D图像,一层一层转化为2D切片很难且工作量大,而且也不高效,因为相邻切片之间的信息相似性很大。而用整个3D体积的全部数据去训练既低效又极有可能过拟合(如abus假阳性严重),同时无法创造出海量数据去好好训练(数据扩增上的困难)。

3D Unet只需要少部分2D的标注切片就可以生成密集的立体的分割。此网络主要有两个不同的作用方式,一是在一个稀疏标注的数据集上训练并在此数据集上预测其他未标注的地方,另一个方法是在多个稀疏标注的数据集训练,然后预测新的数据。

3D UNet基于之前的U-Net结构,不同的是将所有2D操作改为3D操作,同时为了加快收敛,避免训练瓶颈,使用了BN。并在训练时依据当前Batch信息进行了归一化和标准化。同时相比较于U-Net ,加权softmax损失函数,将未标记像素的权重设置为零,可以只从已标记的像素中学习。背景的softmax损失表达式中的权重被减少,而管内的权重增加,这样做有利于更好地分割,因为绝大多数地方是背景,相当于起到了突出强调作用。网络结构如下:

3D U-Net

通过对医疗图像研究的分析,可以得到在许多生物医学应用程序中,只需要很少的图像就可以训练一个适当地概括的网络。这是因为每个图像都已经包含了具有相应变化的重复结构。在立体图像中,这种效果更加明显。这样我们就可以在两个容量图像上训练一个网络,从而推广到第三个。加权损失函数和特殊的数据增强使我们仅用少量手动标注的片来训练网络。u-net的体系结构和数据增强允许从很少的带注释的示例中获得非常好的泛化性能的学习模型,并显示适当地应用刚性转换和轻微的弹性变形仍然会产生生物学上可信的图像。

这里使用的数据是爪蟾肾胚,标记时0表示在管内,1表示管壁,2表示背景,3表示未标记,对经常出现的背景进行了加权,增加了内部小管的权重,以达到小管和背景体素对损耗的平衡影响。带有标签3的体素(“未标记的”)不会对损失计算有贡献,即重量为0。并通过cuDNN 加速。

通过旋转、缩放和灰度变化以及在标签和真实数据上的弹性变化进行数据扩增。在实验过程中,作者还采取了交叉验证和对比验证,对半自动和全自动分割两种情况,最好的是3D+BN,其次是3D(无BN),最后是2D+BN。77个切片样本分为3个子集进行3折交叉验证。

部分参考:https://blog.csdn.net/wyzjack47/article/details/81118483;https://github.com/ellisdg/3DUnetCNN

### 回答1: Retinex-UNet算法是一种基于深度学习的图像增强方法,它可以有效地提高低照度图像的质量。在进行数据增强时,我们可以使用该算法来对原始图像进行增强处理,以生成更多的训练数据。具体步骤如下: 1. 收集原始低照度图像数据集。 2. 使用Retinex-UNet算法对原始图像进行增强处理,以生成更多的训练数据。 3. 对增强后的图像进行数据扩充,如平移、旋转、缩放等操作,以进一步增加训练数据集的大小。 4. 将增强后的图像和原始图像一起作为训练数据集。 通过以上步骤,我们可以有效地利用Retinex-UNet算法来增强低照度图像,并生成更多的训练数据,从而提高模型的泛化能力和准确性。 ### 回答2: Retinex-UNet算法是一种用于低照度图像增强的方法。在低照度条件下,图像可能会失真,细节模糊,颜色失真等。为了提高低照度图像的质量和可视性,我们可以利用Retinex-UNet算法进行图像数据增强。 Retinex-UNet算法结合了Retinex算法和U-Net神经网络,能够有效地恢复低照度图像中的潜在细节细微变化。首先,Retinex算法通过计算图像中的全局和局部对比度来增强图像的亮度和对比度。然后,U-Net神经网络被用来学习低照度图像和其增强版本之间的映射关系,从而进一步提高图像质量。 在Retinex-UNet算法中,首先对原始低照度图像进行预处理,包括对图像进行噪声去除和图像增强。接下来,通过Retinex算法对图像进行对比度增强,以减少光照不足和颜色失真。然后,将增强的图像输入到U-Net神经网络中,进行特征学习和映射。最后,通过后处理步骤完成图像的细节恢复和质量增强。 Retinex-UNet算法的优点是可以有效地提高低照度图像的可视性和质量。通过对比度增强和深度学习,该算法可以恢复图像中的细节和颜色信息,使得图像更加清晰和真实。此外,Retinex-UNet算法具有较好的适应性,可以应用于多种低照度场景下的图像增强。 综上所述,Retinex-UNet算法是一种用于低照度图像增强的方法。通过对比度增强和深度学习,该算法能够恢复低照度图像中的细节和颜色信息,提高图像的质量和可视性。它具有广泛的适应性,可应用于不同场景下的低照度图像增强任务。 ### 回答3: Retinex-UNet算法是一种用于低照度图像增强的方法。该算法结合了Retinex算法(一种用于补偿图像照明不均匀性的方法)和UNet网络(一种经典的图像分割网络),可以有效恢复低照度图像的细节和亮度。 首先,Retinex算法用于消除图像中的照明不均匀性。该算法基于光照模型,将图像分解为反射成分和照明成分。通过对照明成分进行调整,可以增强图像的亮度,并恢复图像中丢失的细节。 然后,使用UNet网络进行分割,将图像中的不同目标分离出来。UNet网络是一种具有自编码器结构的卷积神经网络,可以学习图像的特征表达和语义信息。通过将图像输入UNet网络,可以准确地对图像进行分割,从而更好地理解和改变图像的内容。 在Retinex-UNet算法中,Retinex算法用于消除低照度图像的照明不均匀性,恢复图像亮度和细节,而UNet网络则用于进一步改善图像的质量和内容。通过结合这两种方法,可以实现对低照度图像的有效增强。 总结起来,基于Retinex-UNet算法的低照度图像增强方法通过消除图像的照明不均匀性和精确分割图像的目标来提高图像的质量和内容。这种方法可以在计算机视觉和图像处理任务中广泛应用,如智能交通、医学影像等领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值