【3D图像分割】基于 Pytorch 的 3D 图像分割3(3D UNet 模型篇)


在本文中,主要是对 3D UNet 进行一个学习和梳理。对于 3D UNet 网上的资料和 GitHub直接获取的代码很多,不需要自己从 0开始。那么本文的目的是啥呢?

本文就是想拆解下其中的结构,看看对于一个3DUNet,和2DUNet,究竟有什么不同?如果是你自己构建,有什么样的经验和技巧可以学习。

3DUNet的论文地址:3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation

对于2DUNet感兴趣的小伙伴,可以先跳转去这里:【BraTS】Brain Tumor Segmentation 脑部肿瘤分割2(UNet的复现);相信阅读完,你会对这个模型ÿ

### 如何获取 DeepSeek 免费 Token 对于希望获取 DeepSeek 免费 Token 的用户来说,存在多个途径来实现这一目标。 当前有特定时间段内的优惠活动可供利用。例如,在注册 DeepSeek 账户时,新用户可以获得价值10元人民币的免费 Token,这大约等于一千万元的 Token 数量[^1]。此外,针对接入 DeepSeek V3 版本的服务,也有过提供五百万元 Token 的限时优惠直至指定日期结束的通知[^2]。而更进一步地,某些情况下服务商为了表达对客户的感激之情以及促进未来的合作关系,会在一定期限内给予更高额度如五亿 Tokens免费使用权[^4]。 需要注意的是这些优惠政策可能会随时间变化,并且具体条款可能有所调整。因此建议访问官方渠道确认最新的促销信息并按照指引完成相应操作以获得免费资源。 #### 获取步骤概述 虽然这里不使用诸如“首先”这样的引导词,但以下是概括性的描述: - 访问官方网站或应用平台创建账户; - 阅读并同意服务协议及相关政策说明; - 完成身份验证流程(如果必要); - 查看可用的奖励计划详情页了解最新福利措施; - 根据页面提示领取相应的免费 Token 或参与其他形式的激励项目; ```python # 示例代码用于展示如何通过API请求获取Token(假设场景),实际操作需参照官方文档指导。 import requests def get_free_token(api_url, user_info): response = requests.post(api_url, json=user_info) if response.status_code == 200: token_data = response.json() print(f"成功获取到 {token_data['amount']} tokens.") else: print("未能成功获取Token.") user_details = {"email": "example@example.com", "password": "securePassword"} get_free_token("https://api.deepseek.example/token/free", user_details) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钱多多先森

你的鼓励,是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值