【3D 图像分割】基于 Pytorch 的 3D 图像分割11(预测结果 Recall 和 FPAR 评估)


如果要对预测结果,与标记结果进行评估,判断下模型的预测能力怎么样,该怎么办呢?在论文里面经常采用 dice coeff这个值作为横向比较评判的标准。

而在实际的使用中,你们都会采用什么其他的评估方法,评价指标呢?本文采用更加直观的召回率和平均案例的假阳性率作为评价模型性能的指标,这个更加的贴近了产业一线,医生也会更加的理解你模型性能的优劣,与他们实际使用时候,大概的一个性能。

那下面我们就对本系列使用的评价指标,做个详细的介绍把。

一、导言

Dice系数是一种常用的分割模型评估指标,它衡量了模型预测结果与真实标签之间的相似度,具有以下特点、优势和不足:

特点:

  • Dice系数是一种常用的二分类评估指标,用于衡量模型预测结果与真实标签之间的相似度。
  • Dice系数的取值范围在0到1之间,越接近1表示模型预测结果与真实标签越相似。
  • Dice系数计算简单,只需要计算预测结果和真实标签中交集的大小和并集的大小即可。

优势:

  • Dice系数对于
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钱多多先森

你的鼓励,是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值