水果分类

浆果:外果皮为一层表皮,中果皮及内果皮几乎全部为浆质。如葡萄、蕃茄等。
瓜果:果皮在老熟时形成坚硬的外壳,内果皮为浆质,如西瓜、哈密瓜等。
橘果:外皮含油泡,内果皮形成果瓣,如柳橙、文旦等。
核果:内果皮形成硬核,包有一枚种子,如桃、李等。
仁果:花扥发育成肥厚的果肉,包围在子房的外面,外果皮及中果皮与果肉相连;
内果皮形成果心,里面有种子,如苹果、梨等。


apple 苹果 

pear 梨

 apricot杏 

peach 桃 

grape 葡萄 
banana 香蕉 
pineapple 凤梨 
plum 李子 
watermelon 西瓜 
orange 橙 
lemon 柠檬 
mango 芒果 
strawberry 草莓 
medlar 欧查果 
loquat 枇杷 
mulberry 桑椹 
cherry 樱桃 
pomegranate 石榴 
fig 无花果 
tangerine 橘子 
persimmon 柿子 
walnut 胡桃 
hazelnut 榛子 
peanut 花生 
date 椰枣 
chestnut 粟子 
currant 醋粟 
coconut 可可果 
bilberry 越蔓橘 
blueberry 黑莓 
avocado 鳄梨 
black currant 红醋栗 
blood orange 红橙 
grapefruit 葡萄柚 
almond 巴旦杏 
papaya 木瓜 
guava 番石榴 
prickly pear 仙人掌果 
raspberry 覆盆子 
almond杏仁 
apple苹果 
apple core苹果核 
apple juice苹果汁 
apple skin苹果皮 
apricot杏子 
apricot flesh杏肉 
apricot pit杏核 
areca nut槟榔子 
banana香蕉 
banana skin香蕉皮 
bargain price廉价 
beechnut山毛榉坚果 
Beijing flowering crab海棠果 
bitter苦的 
bitterness苦味 
bitter orange酸橙 
blackberry黑莓 
canned fruit罐头水果 
carambola杨桃 
cherry樱桃 
cherry pit樱桃核 
cherry pulp樱桃肉 
chestnut栗子 
Chinese chestnut板栗 
Chinese date枣 
Chinese gooseberry猕猴桃 
Chinese walnut山核桃 
coconut椰子 
coconut milk椰奶 
coconut water椰子汁 
cumquat金桔 
damson plum西洋李子 
Dangshan pear砀山梨 
date枣 
date pit枣核 
decayed fruit烂果 
downy pitch毛桃 
dry fruit干果 
duke公爵樱桃
fig无花果 
flat peach蟠桃
fresh litchi鲜荔枝 
gingko白果,银杏 
 
grape葡萄 greengage青梅 Hami melon哈密瓜 haw山楂果 hazel榛子 honey peach水蜜桃 juicy peach水蜜桃 jujube枣 kernel仁 kumquat金桔  lemon柠檬 litchi荔枝 longan桂圆,龙眼 loguat枇杷 mandarine柑桔 mango芒果 morello黑樱桃 muskmelon香瓜,甜瓜 navel orange脐橙 nut坚果 nut meat坚果仁 nut shell坚果壳 oleaster沙枣 olive橄榄 orange柑桔 papaya木瓜 peach桃子 pear梨 pineapple菠萝 plum李子 plumcot李杏 pomegranate石榴 pomelo柚子,文旦 red bayberry杨梅 seedless orange无核桔  strawberry草莓 sultana无核小葡萄 tangerine柑桔  tinned fruit罐头水果 walnut胡桃,核桃 walnut kernel核桃仁 water chestnut荸荠 watermelon西瓜
### 使用 Halcon 实现水果分类项目的概述 为了实现高效的水果分类,Halicon 提供了一个强大的平台来构建和训练深度学习模型。通过利用 Halcon 的工具链,可以创建一个专门针对水果图像的分类系统。 #### 创建自定义数据集 由于水果种类繁多且形态各异,在开始之前需准备高质量的数据集用于训练模型。这通常涉及收集大量不同品种、角度及光照条件下的水果图片,并对其进行标注以便后续处理[^2]。 #### 构建并优化神经网络架构 对于水果分类任务而言,可以选择预训练好的卷积神经网络作为基础模型,再根据具体应用场景调整最后一层全连接层以适应新的类别数量。此外还可以考虑引入迁移学习机制加快收敛速度提高泛化能力。 #### 训练过程配置 设置合理的超参数组合是确保良好性能的关键因素之一。包括但不限于批量大小(batch size),迭代次数(epoch number), 学习率(learning rate)等参数的选择都需要经过多次实验验证才能得出最优解方案;同时也要注意监控过拟合现象的发生及时采取措施加以抑制。 ```python # Python接口调用Halcon函数示例代码片段 from pyhalcon import * # 加载已有的CNN模型或初始化新模型 gen_param_tuple := ['ModelType', 'cnn_classification'] create_class_cnn(gen_param_tuple, ModelHandle) # 设置输入尺寸和其他必要属性 set_class_cnn_model_params(ModelHandle, ImageWidth=width, ImageHeight=height,...) ``` #### 测试与评估阶段 完成上述步骤之后就可以进入测试环节了。此时应该选取一部分未参与前期训练过程的新鲜样本进行预测操作,并计算各类评价指标如准确率(Accuracy)、召回率(Precision)、F1-Score等等用来衡量整个系统的有效性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值