LLM之RAG实战(十九)| 利用LangChain、OpenAI、ChromaDB和Streamlit构建RAG

本文详细介绍了如何使用ChromaDB和OpenAI构建一个RAG驱动的LLM应用程序,涉及环境配置、数据处理、嵌入创建以及通过Streamlit实现的用户友好聊天界面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       生成式人工智能以其创造与上下文相关内容的能力彻底改变了技术,开创了人工智能可能性的新时代。其核心是检索增强生成(RAG),将信息检索与LLM相结合,从外部文档中产生智能、知情的响应。

     本文将深入研究使用ChromaDB构建RAG驱动的LLM应用程序,ChromaDB以其对大型数据集的高效处理而闻名。

一、环境准备

      要构建基于RAG的LLM应用程序,需要准备如下环境配置:

  • python(下载地址:https://www.python.org/downloads/)
  • OpenAI API Key(获取地址:https://platform.openai.com/signup)

        以及对Python和web API的基本理解。

二、代码实现

2.1 创建并导航到项目目录

在终端中,创建一个新目录并导航到该目录:

mkdir rag_lmm_applicationcd rag_lmm_application

2.2 创建虚拟环境

虚拟环境可以隔离不同的python环境,创建命令如下所示:

python -m venv venv

激活虚拟环境。对于Mac/Linux用户,请使用:

source venv/bin/activate

对于Windows用户:

venv\Scripts\activate

2.3 安装所需的包

安装基本库:

pip install -r requirements.txt

PS:确保requirements.txt文件中包含所有必要的依赖项。

       通过上述步骤,环境已经准备就绪,下面开始使用ChromaDB构建最先进的RAG聊天应用程序。

2.4 加载和处理文档

      下面使用LangChain来加载各种文档格式,如PDF、DOCX和TXT,这对于外部数据访问、确保高效的数据处理以及为后续阶段保持统一的数据准备至关重要。代码如下:

# loading PDF, DOCX and TXT files as LangChain Documentsdef load_document(file):    import os    name, extension = os.path.splitext(file)    if extension == '.pdf':        from langchain.document_loaders import PyPDFLoader        print(f'Loading {file}')        loader = PyPDFLoader(file)    elif extension == '.docx':        from langchain.document_loaders import Docx2txtLoader     
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wshzd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值