生成式人工智能以其创造与上下文相关内容的能力彻底改变了技术,开创了人工智能可能性的新时代。其核心是检索增强生成(RAG),将信息检索与LLM相结合,从外部文档中产生智能、知情的响应。
本文将深入研究使用ChromaDB构建RAG驱动的LLM应用程序,ChromaDB以其对大型数据集的高效处理而闻名。
一、环境准备
要构建基于RAG的LLM应用程序,需要准备如下环境配置:
- python(下载地址:https://www.python.org/downloads/)
- OpenAI API Key(获取地址:https://platform.openai.com/signup)
以及对Python和web API的基本理解。
二、代码实现
2.1 创建并导航到项目目录
在终端中,创建一个新目录并导航到该目录:
mkdir rag_lmm_application
cd rag_lmm_application
2.2 创建虚拟环境
虚拟环境可以隔离不同的python环境,创建命令如下所示:
python -m venv venv
激活虚拟环境。对于Mac/Linux用户,请使用:
source venv/bin/activate
对于Windows用户:
venv\Scripts\activate
2.3 安装所需的包
安装基本库:
pip install -r requirements.txt
PS:确保requirements.txt文件中包含所有必要的依赖项。
通过上述步骤,环境已经准备就绪,下面开始使用ChromaDB构建最先进的RAG聊天应用程序。
2.4 加载和处理文档
下面使用LangChain来加载各种文档格式,如PDF、DOCX和TXT,这对于外部数据访问、确保高效的数据处理以及为后续阶段保持统一的数据准备至关重要。代码如下:
# loading PDF, DOCX and TXT files as LangChain Documents
def load_document(file):
import os
name, extension = os.path.splitext(file)
if extension == '.pdf':
from langchain.document_loaders import PyPDFLoader
print(f'Loading {file}')
loader = PyPDFLoader(file)
elif extension == '.docx':
from langchain.document_loaders import Docx2txtLoader