随着AI技术的迅猛发展,Retrieval-Augmented Generation (RAG)系统已成为构建智能问答系统的核心。RAG系统通过结合信息检索与生成模型的能力,不仅能够检索相关知识,还能基于这些知识生成准确的答案。本文将带你深入了解如何使用Ollama、DeepSeek、LangChain和Streamlit等技术栈,在Ubuntu系统上部署一个完整的RAG应用。
1. RAG技术概述与系统架构
什么是RAG系统?
RAG (Retrieval-Augmented Generation) 是一种将信息检索与生成模型结合的架构。RAG系统通常由两个主要部分组成:
- 信息检索(Retrieval):通过检索数据库中的相关文档,为生成模型提供上下文。
- 生成模型(Generation):基于检索到的文档,通过语言生成模型(如GPT)生成回答。
这一架构非常适合于复杂的问答任务,尤其是当问题涉及特定领域的知识时,RAG可以通过检索相关资料并生成准确的回答。