基于Ollama、DeepSeek、LangChain和Streamlit的RAG应用部署

在这里插入图片描述
随着AI技术的迅猛发展,Retrieval-Augmented Generation (RAG)系统已成为构建智能问答系统的核心。RAG系统通过结合信息检索与生成模型的能力,不仅能够检索相关知识,还能基于这些知识生成准确的答案。本文将带你深入了解如何使用Ollama、DeepSeek、LangChain和Streamlit等技术栈,在Ubuntu系统上部署一个完整的RAG应用。

1. RAG技术概述与系统架构

什么是RAG系统?

RAG (Retrieval-Augmented Generation) 是一种将信息检索与生成模型结合的架构。RAG系统通常由两个主要部分组成:

  • 信息检索(Retrieval):通过检索数据库中的相关文档,为生成模型提供上下文。
  • 生成模型(Generation):基于检索到的文档,通过语言生成模型(如GPT)生成回答。

这一架构非常适合于复杂的问答任务,尤其是当问题涉及特定领域的知识时,RAG可以通过检索相关资料并生成准确的回答。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海棠AI实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值