matlab:FIR(有限脉冲响应)滤波器

本文介绍了如何使用FIR滤波器在Matlab中处理含有噪声的时域信号,包括傅里叶变换、设计滤波器、保留特定频率并进行逆变换的过程,以及注意事项如频率分辨率和相位保持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 1、FIR滤波器的简单介绍

本文只讲代码,不详细陈述原理。

简单的说,就是:将一个包含噪声的时域信号,在其频域上去除噪声,然后再回到时域,得到想要的原始信号,通过fft(傅里叶变化函数)、ifft(傅里叶逆变换函数)实现。

再具体一点就是:将包含噪声的时域信号进行傅里叶变换,得到频谱图,然后自己设计一个滤波器,去除频谱图中不需要的频率点,只留下原始信号的频率点,然后再进行傅里叶逆变换,返回时域。

接下来通过一个例子进行理解

2、示例

①假设现在有一个频率为1Hz、幅值为10的时域信号,叠加上一个高斯白噪声,代码如下

fs = 50; % 采样频率
t = 0:1/fs:1-1/fs;
s = 10*sin(2*pi*t); % 原信号
white_noise = wgn(length(t), 1, 0)'; % 白噪声 
y = s + white_noise; % 原信号+白噪声

figure(1);
subplot(3,1,1)
plot(t,s);
xlabel('t/s');
title('原信号')
subplot(3,1,2)
plot(t,white_noise);
xlabel('t/s');
title('高斯白噪声')
subplot(3,1,3)
plot(t,y);
xlabel('t/s');
title('原信号叠加高斯白噪声')

结果如下图所示

②对该进行傅里叶变换,然后设计一个滤波器,滤除其他频点(即将其他频率的值归零),只留下频率为1Hz处的值,代码如下

N = 50; % 采样点数
f_x = (0:(N-1))*fs/N; % 频谱横轴坐标,其中fs/N为频率分辨率
S_f = fft(y(1:N));
figure(2);
subplot(3,1,1)
stem(f_x, abs(S_f), 'filled');
xlabel('F/Hz');
title('频谱(原信号叠加高斯白噪声)')
S_f_FIR = zeros(size(S_f)); % FIR滤波器的频谱
S_f_FIR(2) = 1;  % 留下频率为1Hz处的值
S_f_FIR(50) = 1;  % 频谱上与1Hz对称的点
subplot(3,1,2)
stem(f_x, S_f_FIR, 'filled');
xlabel('F/Hz');
title('频谱(FIR滤波器)')
subplot(3,1,3)
stem(f_x, abs(S_f).*S_f_FIR, 'filled');
xlabel('F/Hz');
title('频谱(信号经过FIR滤波)')

结果如下图所示

需要注意的是:在之前的“matlab傅里叶变换”的文章中提到过,频率分辨率(fs/N)需要小于等于所求频率,才能避免出现频率混叠的现象,故此处fs/N应该小于等于1Hz

③进行傅里叶逆变换,回到时域,代码如下

s_FIR = ifft(S_f_FIR,length(t+1))
figure(3)
subplot(3,1,1)
plot(t,s);
xlabel('t/s');
title('原信号')
subplot(3,1,2)
plot(t,s_FIR)
xlabel('t/s');
title('FIR滤波器的时域信号')
s_t_FIR = ifft(S_f.*S_f_FIR,length(t+1)) % 该处不能用abs(S_f),否则会丢失相位,导致时域信号时移
subplot(3,1,3)
plot(t,s_t_FIR)
xlabel('t/s');
title('通过FIR滤波器所恢复的时域信号')

结果如下图所示

需要注意的是:进行傅里叶逆变换的时候,对于原信号的频谱,不能取其模(即abs),因为取模的话,会丢失时域信号的相位,导致时域信号发生时移

<think>好的,我现在需要处理用户关于MATLABFIR滤波器设计与实现的问题。首先,用户明确提到想了解设计和实现两个方面,所以我需要分步骤来组织回答。 首先,系统级指令要求使用中文回答,生成相关问题,并正确使用LaTeX格式。同时,需要引用提供的参考资料。我需要确保所有数学公式都正确使用$...$或$$...$$,比如滤波器设计中的公式。 接下来,回顾用户提供的引用内容。引用[1]提到了FIR滤波器的设计和MATLAB,引用[2]讨论了实现方式及MATLAB生成测试数据,引用[4]涉及FPGA量化参数和Verilog代码生成。这些都需要在回答中适当引用。 用户的问题集中在MATLAB中的设计与实现,所以需要涵盖设计步骤、常用函数(如fir1、firpm)、设计方法(如窗函数法、最小二乘法),以及实现部分,包括滤波应用和定点量化。同时,可能需要提到Simulink仿真,如引用[3]提到的IIR滤波器设计,但用户关注的是FIR,所以可能需要调整相关内容。 然后,思考如何结构化回答。首先介绍FIR滤波器基本概念,然后在设计部分分步骤说明,每个步骤可能涉及MATLAB函数和示例代码。实现部分则包括应用滤波器和量化参数,以及生成HDL代码。需要确保代码块正确使用格式,并引用相关文献,比如引用[2]和[4]。 可能遇到的问题:需要明确区分设计和实现的不同方面,确保每个部分都有对应的引用支持。同时,注意用户提到的定点数量化在FPGA中的应用,这部分可能需要引用[4]中的内容,说明如何将MATLAB设计的参数导出并进行量化。 最后,生成相关问题时要围绕FIR滤波器的设计方法、实现技术、性能优化和应用场景展开,确保问题有针对性且能引导进一步学习。 检查LaTeX格式是否正确,例如滤波器传递函数使用$$H(z) = \sum_{k=0}^{N} h(k)z^{-k}$$,确保独立公式单独成段。行内公式如$h(k)$是否正确使用$符号。 总结回答的结构:概述、设计步骤(窗函数法、最小二乘法)、实现方法(滤波应用、量化、HDL生成)、相关问题。每个部分引用对应的资料,例如引用[1]在设计步骤,引用[2]和[4]在实现部分。 最后,验证所有引用是否正确标记,没有遗漏,并且回答符合用户要求的结构清晰、真实可靠。</think>### MATLABFIR滤波器的设计与实现 #### 1. FIR滤波器设计概述 有限长单位冲激响应(FIR滤波器因其线性相位特性广泛应用于信号处理[^1]。其传递函数为: $$H(z) = \sum_{k=0}^{N} h(k)z^{-k}$$ 其中$h(k)$为滤波器系数,$N$为阶数。 --- #### 2. 设计步骤 ##### (1) **规格定义** - 确定通带截止频率$f_p$、阻带截止频率$f_s$ - 设置通带波纹$\delta_p$和阻带衰减$\delta_s$ ##### (2) **MATLAB设计函数** - **窗函数法**(适合简单需求): ```matlab N = 50; % 滤波器阶数 fc = 0.3; % 归一化截止频率 h = fir1(N, fc, hamming(N+1)); % 汉明窗设计 ``` 通过`fvtool(h,1)`可查看幅频响应 - **最小二乘法**(优化通带/阻带误差): ```matlab F = [0 0.4 0.5 1]; % 频带边界 A = [1 1 0 0]; % 目标幅值 h = firpm(60, F, A); ``` --- #### 3. 实现方法 ##### (1) **滤波应用** ```matlab x = sin(2*pi*100*t) + 0.5*randn(size(t)); % 含噪声信号[^2] y = filter(h, 1, x); % 直接滤波 ``` ##### (2) **定点数量化** FPGA实现时需要量化系数(引用[4]方法): ```matlab h_quant = fi(h, 1, 16, 15); % 16位定点数,15位小数 ``` ##### (3) **HDL代码生成** 通过Filter Designer工具: 1. 选择**半并行结构**平衡资源与速度 2. 导出Verilog代码供Modelsim仿真[^4] --- #### 4. 关键性能指标验证 | 指标 | 验证方法 | |-------------|---------------------------| | 幅频特性 | `freqz(h,1,1024)` | | 群延迟 | `grpdelay(h,1)` | | 量化误差 | `q = h - double(h_quant)` | ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值