Qt:5.8新特新,QtLite使用方法,以及缩减应用体积的效果

Qt到了5.8版本,终于迎来了一个重要功能,就是QtLite
此功能可谓是千呼万唤始出来,饱受诟病的体积问题,终于可以在一定程度上得到解决。

那么QtLite到底是什么呢,按照官方原话,是

Configurability (Qt Lite Project)
Qt 5.8 comes with a rewritten configuration system that allows for easy customization of Qt builds. The main focus of this feature is for the Device Creation, but it can also be used to tailor a Qt build for mobile or desktop platforms. The new configuration system allows removing individual pieces of functionality and APIs from Qt, creating a more lightweight set of libraries for deployment. 

也就是说,QtLite实质上是一个配置系统。
话说我最初以为这是一个单独的工具,可以直接缩减应用的体积。然而并不是。

我这里主要说下后半段,也就是 removing individual pieces of functionality and APIs from Qt ,这句话的意思就是我们可以直接去除Qt模块中的功能和API了,这是缩减体积最重要的部分。

什么叫去除功能和API呢。我举个例子
Qt里有一个类,叫QClipboard,就是剪切板相关的功能。但是很多人出于某些原因,不用这个,或者用了系统的API。那么这样的话,这个QClipboard就没有任何存在的意义了,我们就可以直接去掉它,以缩减库体积,最终缩减应用的体积。

那么如何做到这一点呢。首先我们要重新编译Qt的源码,然后在配置的时候,添加特定的参数,来进行配置,去除掉这个功能。
参数很简单,就是 -no-feature-clipboard
配置好后,重新编译Qt,就可以了。

目前Qt有一个feature列表,里面记录了Qt有哪些feature,有100多个。我的理解就是这里的feature都是可以去掉的,这个列表存放的位置在源码的 qtbase\src\corelib\global\qfeatures.txt

内容如下:
这里写图片描述

不过呢,在我的实际使用中,我发现这个列表里的并非都可以去掉,我只能说一大半是可以去掉的。要我说怎么区分哪些可以,哪些不可以。首先是看Requires,模块间是相互依赖的,被Requires的模块去掉的话,Requires它的模块就会没法正常编译。在Requires都得到保证的情况下,也不是说所有模块都可以去掉,有时候编译会报错,那么只能把去掉的feature加回去。

比如说,遇到了这个
这里写图片描述
这里说QSettings不是一个类型。的确,我去掉了settings这个feature。看起来是其他的模块,使用了QSettings。
(貌似是gui那里用了core里的这个feature?那我如果不用gui是不是可以仍然去掉这个feature呢?具体还没尝试)
但是settings这个feature在列表里,没有Requires其他feature,其他feature也没有Requires它,有图为证。

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值