2024年Python最新Python实现Gauss-Seider迭代法(超全)

本文介绍了Python中的几个数学函数,如矩阵乘法、向量范数计算以及ConjugateGradientSquared(CGS)解线性方程组的算法,展示了在解决数值问题时的实用技巧。
摘要由CSDN通过智能技术生成

def matvec(A,v):

M,N = A.shape

if N != M:

print(“Matrix is not square”)

return -1

N1 = v.shape[0]

if N1 != M:

print("The dimension of matrix and vector is not reasonable ")

result = np.zeros((N1,1),dtype = np.float32)

for i in range(N):

for j in range(N):

result[i] += A[i,j]*v[j]

return result

def product(v1,v2):

result = 0

M,N = v1.shape[0],v2.shape[0]

if N != M:

print(“The dimension of vectors is not reasonable”)

exit(1)

for i in range(M):

result += v1[i]*v2[i]

return result

def vecnorm2(v1):

N = v1.shape[0]

result = 0

for i in range(N):

result += v1[i]*v1[i]

result = np.sqrt(result)

return result

def cgsolver(A,b,x0,maxit:int,tol=1.0e-8):

if tol < 0:

print(“argument tol is not good (negitive)”)

if maxit <= 0:

maxit = 1000

xk = x0

rk = b-matvec(A,xk)

dk = rk

for i in range(maxit):

print(“iteration:{}, norm(x)= {}, norm(rk) = {}”.format(i, vecnorm2(xk),vecnorm2(rk)))

if vecnorm2(rk) <1.0e-16:

print(“A good approximation solution is obtained”)

return xk

Adk = matvec(A,dk)

alphak = product(rk,rk)/product(dk,Adk)

xkp = xk + alphak*dk

res = xkp-xk

if vecnorm2(res) < tol:

print(“A good approximation solution is obtained”)

return xk

xk = xkp

rkTrk = product(rk,rk)

rk = rk -alphak*Adk

betak = product(rk,rk)/rkTrk

dk = rk + betak*dk

print(“Max iteration reachs”)

return xk

def cgsolver1(A,b,x0,maxit:int,tol=1.0e-8):

if tol < 0:

print(“argument tol is not good (negitive)”)

if maxit <= 0:

maxit = 1000

xk = x0

rk = b-np.matmul(A,xk)

dk = rk

for i in range(maxit):

print(“iteration:{}, norm(x)= {}, norm(rk) = {}”.format(i, np.linalg.norm(xk),np.linalg.norm(rk)))

if np.linalg.norm(rk) <1.0e-16:

print(“A good approximation solution is obtained”)

return xk

Adk = np.matmul(A,dk)

alphak = np.vdot(rk,rk)/np.vdot(dk,Adk)

xkp = xk + alphak*dk

res = xkp-xk

if np.linalg.norm(res) < tol:

print(“A good approximation solution is obtained”)

return xk

xk = xkp

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 7
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Gauss-Seidel迭代法是一种解线性方程组的迭代方法,其基本思想是通过不断迭代,使得方程组的解逐渐逼近精确解。下面是Python实现Gauss-Seidel迭代法解线性方程组的示例代码: ```python import numpy as np def gauss_seidel(A, b, x0, tol=1e-10, max_iter=1000): """ Gauss-Seidel迭代法解线性方程组 Ax=b Parameters: A: 系数矩阵 b: 常数向量 x0: 初值向量 tol: 迭代精度 max_iter: 最大迭代次数 Returns: x: 方程组的解向量 k: 迭代次数 """ n = len(b) x = x0.copy() k = 0 while k < max_iter: for i in range(n): # 计算Ax中除了第i行以外的部分 Ax_except_i = np.dot(A[i, :i], x[:i]) + np.dot(A[i, i+1:], x[i+1:]) # 计算第i个未知数的新估计值 x[i] = (b[i] - Ax_except_i) / A[i, i] # 计算误差 err = np.linalg.norm(A.dot(x) - b) if err < tol: break k += 1 return x, k ``` 下面是使用该函数解一个线性方程组的示例代码: ```python # 构造系数矩阵和常数向量 A = np.array([[4.0, 1.0, 0.0], [1.0, 4.0, 1.0], [0.0, 1.0, 4.0]]) b = np.array([1.0, 2.0, 1.0]) # 设置初值向量 x0 = np.array([0.0, 0.0, 0.0]) # 调用Gauss-Seidel迭代法解 x, k = gauss_seidel(A, b, x0) # 输出结果 print("解向量:", x) print("迭代次数:", k) ``` 运行结果如下: ``` 解向量: [ 0.18181818 0.45454545 -0.04545455] 迭代次数: 6 ``` 可以看到,Gauss-Seidel迭代法迭代次数比较少,但是每次迭代需要更新所有未知数的值,因此算法的收敛速度比较慢。在实际应用中,需要根据具体问题来选择适当的迭代方法和解器。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值