# -*- coding: utf-8 -*-
from numpy import *
def deg2rad(degrees):
return degrees * pi / 180.
def rad2deg(radians):
return radians * 180. / pi
#
def baryvel(dje, deq=0):
"""
NAME:
BARYVEL
PURPOSE:
Calculates heliocentric and barycentric velocity components of Earth.
EXPLANATION:
BARYVEL takes into account the Earth-Moon motion, and is useful for
radial velocity work to an accuracy of ~1 m/s.
CALLING SEQUENCE:
dvel_hel, dvel_bary = baryvel(dje, deq)
INPUTS:
DJE - (scalar) Julian ephemeris date.
DEQ - (scalar) epoch of mean equinox of dvelh and dvelb. If deq=0
then deq is assumed to be equal to dje.
OUTPUTS:
DVELH: (vector(3)) heliocentric velocity component. in km/s
DVELB: (vector(3)) barycentric velocity component. in km/s
The 3-vectors DVELH and DVELB are given in a right-handed coordinate
system with the +X axis toward the Vernal Equinox, and +Z axis
toward the celestial pole.
OPTIONAL KEYWORD SET:
JPL - if /JPL set, then BARYVEL will call the procedure JPLEPHINTERP
to compute the Earth velocity using the full JPL ephemeris.
The JPL ephemeris FITS file JPLEPH.405 must exist in either the
current directory, or in the directory specified by the
environment variable ASTRO_DATA. Alternatively, the JPL keyword
can be set to the full path and name of the ephemeris file.
A copy of the JPL ephemeris FITS file is available in
http://idlastro.gsfc.nasa.gov/ftp/data/
PROCEDURES CALLED:
Function PREMAT() -- computes precession matrix
JPLEPHREAD, JPLEPHINTERP, TDB2TDT - if /JPL keyword is set
NOTES:
Algorithm taken from FORTRAN program of Stumpff (1980, A&A Suppl, 41,1)
Stumpf claimed an accuracy of 42 cm/s for the velocity. A
comparison with the JPL FORTRAN planetary ephemeris program PLEPH
found agreement to within about 65 cm/s between 1986 and 1994
If /JPL is set (using JPLEPH.405 ephemeris file) then velocities are
given in the ICRS system; otherwise in the FK4 system.
EXAMPLE:
Compute the radial velocity of the Earth toward Altair on 15-Feb-1994
using both the original Stumpf algorithm and the JPL ephemeris
IDL> jdcnv, 1994, 2, 15, 0, jd ;==> JD = 2449398.5
IDL> baryvel, jd, 2000, vh, vb ;Original algorithm
==> vh = [-17.07243, -22.81121, -9.889315] ;Heliocentric km/s
==> vb = [-17.08083, -22.80471, -9.886582] ;Barycentric km/s
IDL> baryvel, jd, 2000, vh, vb, /jpl ;JPL ephemeris
==> vh = [-17.07236, -22.81126, -9.889419] ;Heliocentric km/s
==> vb = [-17.08083, -22.80484, -9.886409] ;Barycentric km/s
IDL> ra = ten(19,50,46.77)*15/!RADEG ;RA in radians
IDL> dec = ten(08,52,3.5)/!RADEG ;Dec in radians
IDL> v = vb[0]*cos(dec)*cos(ra) + $ ;Project velocity toward star
vb[1]*cos(dec)*sin(ra) + vb[2]*sin(dec)
REVISION HISTORY:
Jeff Valenti, U.C. Berkeley Translated BARVEL.FOR to IDL.
W. Landsman, Cleaned up program sent by Chris McCarthy (SfSU) June 1994
Converted to IDL V5.0 W. Landsman September 1997
Added /JPL keyword W. Landsman July 2001
Documentation update W. Landsman Dec 2005
Converted to Python S. Koposov 2009-2010
"""
# Define constants
dc2pi = 2 * pi
cc2pi = 2 * pi
dc1 = 1.0e0
dcto = 2415020.0e0
dcjul = 36525.0e0 # days in Julian year
dcbes = 0.313e0
dctrop = 365.24219572e0 # days in tropical year (...572 insig)
dc1900 = 1900.0e0
au = 1.4959787e8
# Constants dcfel(i,k) of fast changing elements.
dcfel = array(
[1.7400353e00, 6.2833195099091e02, 5.2796e-6, 6.2565836e00, 6.2830194572674e02, -2.6180e-6, 4.7199666e00,
8.3997091449254e03, -1.9780e-5, 1.9636505e-1, 8.4334662911720e03, -5.6044e-5, 4.1547339e00, 5.2993466764997e01,
5.8845e-6, 4.6524223e00, 2.1354275911213e01, 5.6797e-6, 4.2620486e00, 7.5025342197656e00, 5.5317e-6,
1.4740694e00, 3.8377331909193e00, 5.6093e-6])
dcfel = reshape(dcfel, (8, 3))
# constants dceps and ccsel(i,k) of slowly changing elements.
dceps = array([4.093198e-1, -2.271110e-4, -2.860401e-8])
ccsel = array(
[1.675104e-2, -4.179579e-5, -1.260516e-7, 2.220221e-1, 2.809917e-2, 1.852532e-5, 1.589963e00, 3.418075e-2,
1.430200e-5, 2.994089e00, 2.590824e-2, 4.155840e-6, 8.155457e-1, 2.486352e-2, 6.836840e-6, 1.735614e00,
1.763719e-2, 6.370440e-6, 1.968564e00, 1.524020e-2, -2.517152e-6, 1.282417e00, 8.703393e-3, 2.289292e-5,
2.280820e00, 1.918010e-2, 4.484520e-6, 4.833473e-2, 1.641773e-4, -4.654200e-7, 5.589232e-2, -3.455092e-4,
-7.388560e-7, 4.634443e-2, -2.658234e-5, 7.757000e-8, 8.997041e-3, 6.329728e-6, -1.939256e-9, 2.284178e-2,
-9.941590e-5, 6.787400e-8, 4.350267e-2, -6.839749e-5, -2.714956e-7, 1.348204e-2, 1.091504e-5, 6.903760e-7,
3.106570e-2, -1.665665e-4, -1.590188e-7])
ccsel = reshape(ccsel, (17, 3))
# Constants of the arguments of the short-period perturbations.
dcargs = array(
[5.0974222e0, -7.8604195454652e2, 3.9584962e0, -5.7533848094674e2, 1.6338070e0, -1.1506769618935e3, 2.5487111e0,
-3.9302097727326e2, 4.9255514e0, -5.8849265665348e2, 1.3363463e0, -5.5076098609303e2, 1.6072053e0,
-5.2237501616674e2, 1.3629480e0, -1.1790629318198e3, 5.5657014e0, -1.0977134971135e3, 5.0708205e0,
-1.5774000881978e2, 3.9318944e0, 5.2963464780000e1, 4.8989497e0, 3.9809289073258e1, 1.3097446e0,
7.7540959633708e1, 3.5147141e0, 7.9618578146517e1, 3.5413158e0, -5.4868336758022e2])
dcargs = reshape(dcargs, (15, 2))
# Amplitudes ccamps(n,k) of the short-period perturbations.
ccamps = array(
[-2.279594e-5, 1.407414e-5, 8.273188e-6, 1.340565e-5, -2.490817e-7, -3.494537e-5, 2.860401e-7, 1.289448e-7,
1.627237e-5, -1.823138e-7, 6.593466e-7, 1.322572e-5, 9.258695e-6, -4.674248e-7, -3.646275e-7, 1.140767e-5,
-2.049792e-5, -4.747930e-6, -2.638763e-6, -1.245408e-7, 9.516893e-6, -2.748894e-6, -1.319381e-6, -4.549908e-6,
-1.864821e-7, 7.310990e-6, -1.924710e-6, -8.772849e-7, -3.334143e-6, -1.745256e-7, -2.603449e-6, 7.359472e-6,
3.168357e-6, 1.119056e-6, -1.655307e-7, -3.228859e-6, 1.308997e-7, 1.013137e-7, 2.403899e-6, -3.736225e-7,
3.442177e-7, 2.671323e-6, 1.832858e-6, -2.394688e-7, -3.478444e-7, 8.702406e-6, -8.421214e-6, -1.372341e-6,
-1.455234e-6, -4.998479e-8, -1.488378e-6, -1.251789e-5, 5.226868e-7, -2.049301e-7, 0.e0, -8.043059e-6,
-2.991300e-6, 1.473654e-7, -3.154542e-7, 0.e0, 3.699128e-6, -3.316126e-6, 2.901257e-7, 3.407826e-7, 0.e0,
2.550120e-6, -1.241123e-6, 9.901116e-8, 2.210482e-7, 0.e0, -6.351059e-7, 2.341650e-6, 1.061492e-6, 2.878231e-7,
0.e0])
ccamps = reshape(ccamps, (15, 5))
# Constants csec3 and ccsec(n,k) of the secular perturbations in longitude.
ccsec3 = -7.757020e-8
ccsec = array(
[1.289600e-6, 5.550147e-1, 2.076942e00, 3.102810e-5, 4.035027e00, 3.525565e-1, 9.124190e-6, 9.990265e-1,
2.622706e00, 9.793240e-7, 5.508259e00, 1.559103e01])
ccsec = reshape(ccsec, (4, 3))
# Sidereal rates.
dcsld = 1.990987e-7 # sidereal rate in longitude
ccsgd = 1.990969e-7 # sidereal rate in mean anomaly
# Constants used in the calculation of the lunar contribution.
cckm = 3.122140e-5
ccmld = 2.661699e-6
ccfdi = 2.399485e-7
# Constants dcargm(i,k) of the arguments of the perturbations of the motion
# of the moon.
dcargm = array([5.1679830e0, 8.3286911095275e3, 5.4913150e0, -7.2140632838100e3, 5.9598530e0, 1.5542754389685e4])
dcargm = reshape(dcargm, (3, 2))
# Amplitudes ccampm(n,k) of the perturbations of the moon.
ccampm = array(
[1.097594e-1, 2.896773e-7, 5.450474e-2, 1.438491e-7, -2.223581e-2, 5.083103e-8, 1.002548e-2, -2.291823e-8,
1.148966e-2, 5.658888e-8, 8.249439e-3, 4.063015e-8])
ccampm = reshape(ccampm, (3, 4))
# ccpamv(k)=a*m*dl,dt (planets), dc1mme=1-mass(earth+moon)
ccpamv = array([8.326827e-11, 1.843484e-11, 1.988712e-12, 1.881276e-12])
dc1mme = 0.99999696e0
# Time arguments.
dt = (dje - dcto) / dcjul
tvec = array([1e0, dt, dt * dt])
# Values of all elements for the instant(aneous?) dje.
temp = (transpose(dot(transpose(tvec), transpose(dcfel)))) % dc2pi
dml = temp[0]
forbel = temp[1:8]
g = forbel[0] # old fortran equivalence
deps = (tvec * dceps).sum() % dc2pi
sorbel = (transpose(dot(transpose(tvec), transpose(ccsel)))) % dc2pi
e = sorbel[0] # old fortran equivalence
# Secular perturbations in longitude.
dummy = cos(2.0)
sn = sin((transpose(dot(transpose(tvec[0:2]), transpose(ccsec[:, 1:3])))) % cc2pi)
# Periodic perturbations of the emb (earth-moon barycenter).
pertl = (ccsec[:, 0] * sn).sum() + dt * ccsec3 * sn[2]
pertld = 0.0
pertr = 0.0
pertrd = 0.0
for k in range(0, 15):
a = (dcargs[k, 0] + dt * dcargs[k, 1]) % dc2pi
cosa = cos(a)
sina = sin(a)
pertl = pertl + ccamps[k, 0] * cosa + ccamps[k, 1] * sina
pertr = pertr + ccamps[k, 2] * cosa + ccamps[k, 3] * sina
if k < 11:
pertld = pertld + (ccamps[k, 1] * cosa - ccamps[k, 0] * sina) * ccamps[k, 4]
pertrd = pertrd + (ccamps[k, 3] * cosa - ccamps[k, 2] * sina) * ccamps[k, 4]
# Elliptic part of the motion of the emb.
phi = (e * e / 4e0) * (((8e0 / e) - e) * sin(g) + 5 * sin(2 * g) + (13 / 3e0) * e * sin(3 * g))
f = g + phi
sinf = sin(f)
cosf = cos(f)
dpsi = (dc1 - e * e) / (dc1 + e * cosf
FK4/5, J2000, B1950, Glat/Glon转换
最新推荐文章于 2024-08-28 14:42:54 发布
本文详细介绍了天文学中不同坐标系统的转换,包括FK4、FK5、J2000、B1950以及地理坐标Glat/Glon之间的相互转换方法,是天文学爱好者和研究者的实用指南。
摘要由CSDN通过智能技术生成