FK4/5, J2000, B1950, Glat/Glon转换

本文详细介绍了天文学中不同坐标系统的转换,包括FK4、FK5、J2000、B1950以及地理坐标Glat/Glon之间的相互转换方法,是天文学爱好者和研究者的实用指南。
摘要由CSDN通过智能技术生成
# -*- coding: utf-8 -*-
from numpy import *


def deg2rad(degrees):
    return degrees * pi / 180.


def rad2deg(radians):
    return radians * 180. / pi


#


def baryvel(dje, deq=0):
    """
     NAME:
           BARYVEL
     PURPOSE:
           Calculates heliocentric and barycentric velocity components of Earth.

     EXPLANATION:
           BARYVEL takes into account the Earth-Moon motion, and is useful for
           radial velocity work to an accuracy of  ~1 m/s.

     CALLING SEQUENCE:
           dvel_hel, dvel_bary = baryvel(dje, deq)

     INPUTS:
           DJE - (scalar) Julian ephemeris date.
           DEQ - (scalar) epoch of mean equinox of dvelh and dvelb. If deq=0
                   then deq is assumed to be equal to dje.
     OUTPUTS:
           DVELH: (vector(3)) heliocentric velocity component. in km/s
           DVELB: (vector(3)) barycentric velocity component. in km/s

           The 3-vectors DVELH and DVELB are given in a right-handed coordinate
           system with the +X axis toward the Vernal Equinox, and +Z axis
           toward the celestial pole.

     OPTIONAL KEYWORD SET:
           JPL - if /JPL set, then BARYVEL will call the procedure JPLEPHINTERP
                 to compute the Earth velocity using the full JPL ephemeris.
                 The JPL ephemeris FITS file JPLEPH.405 must exist in either the
                 current directory, or in the directory specified by the
                 environment variable ASTRO_DATA.   Alternatively, the JPL keyword
                 can be set to the full path and name of the ephemeris file.
                 A copy of the JPL ephemeris FITS file is available in
                     http://idlastro.gsfc.nasa.gov/ftp/data/
     PROCEDURES CALLED:
           Function PREMAT() -- computes precession matrix
           JPLEPHREAD, JPLEPHINTERP, TDB2TDT - if /JPL keyword is set
     NOTES:
           Algorithm taken from FORTRAN program of Stumpff (1980, A&A Suppl, 41,1)
           Stumpf claimed an accuracy of 42 cm/s for the velocity.    A
           comparison with the JPL FORTRAN planetary ephemeris program PLEPH
           found agreement to within about 65 cm/s between 1986 and 1994

           If /JPL is set (using JPLEPH.405 ephemeris file) then velocities are
           given in the ICRS system; otherwise in the FK4 system.
     EXAMPLE:
           Compute the radial velocity of the Earth toward Altair on 15-Feb-1994
              using both the original Stumpf algorithm and the JPL ephemeris

           IDL> jdcnv, 1994, 2, 15, 0, jd          ;==> JD = 2449398.5
           IDL> baryvel, jd, 2000, vh, vb          ;Original algorithm
                   ==> vh = [-17.07243, -22.81121, -9.889315]  ;Heliocentric km/s
                   ==> vb = [-17.08083, -22.80471, -9.886582]  ;Barycentric km/s
           IDL> baryvel, jd, 2000, vh, vb, /jpl   ;JPL ephemeris
                   ==> vh = [-17.07236, -22.81126, -9.889419]  ;Heliocentric km/s
                   ==> vb = [-17.08083, -22.80484, -9.886409]  ;Barycentric km/s

           IDL> ra = ten(19,50,46.77)*15/!RADEG    ;RA  in radians
           IDL> dec = ten(08,52,3.5)/!RADEG        ;Dec in radians
           IDL> v = vb[0]*cos(dec)*cos(ra) + $   ;Project velocity toward star
                   vb[1]*cos(dec)*sin(ra) + vb[2]*sin(dec)

     REVISION HISTORY:
           Jeff Valenti,  U.C. Berkeley    Translated BARVEL.FOR to IDL.
           W. Landsman, Cleaned up program sent by Chris McCarthy (SfSU) June 1994
           Converted to IDL V5.0   W. Landsman   September 1997
           Added /JPL keyword  W. Landsman   July 2001
           Documentation update W. Landsman Dec 2005
           Converted to Python S. Koposov 2009-2010
    """

    # Define constants
    dc2pi = 2 * pi
    cc2pi = 2 * pi
    dc1 = 1.0e0
    dcto = 2415020.0e0
    dcjul = 36525.0e0  # days in Julian year
    dcbes = 0.313e0
    dctrop = 365.24219572e0  # days in tropical year (...572 insig)
    dc1900 = 1900.0e0
    au = 1.4959787e8

    # Constants dcfel(i,k) of fast changing elements.
    dcfel = array(
        [1.7400353e00, 6.2833195099091e02, 5.2796e-6, 6.2565836e00, 6.2830194572674e02, -2.6180e-6, 4.7199666e00,
         8.3997091449254e03, -1.9780e-5, 1.9636505e-1, 8.4334662911720e03, -5.6044e-5, 4.1547339e00, 5.2993466764997e01,
         5.8845e-6, 4.6524223e00, 2.1354275911213e01, 5.6797e-6, 4.2620486e00, 7.5025342197656e00, 5.5317e-6,
         1.4740694e00, 3.8377331909193e00, 5.6093e-6])
    dcfel = reshape(dcfel, (8, 3))

    # constants dceps and ccsel(i,k) of slowly changing elements.
    dceps = array([4.093198e-1, -2.271110e-4, -2.860401e-8])
    ccsel = array(
        [1.675104e-2, -4.179579e-5, -1.260516e-7, 2.220221e-1, 2.809917e-2, 1.852532e-5, 1.589963e00, 3.418075e-2,
         1.430200e-5, 2.994089e00, 2.590824e-2, 4.155840e-6, 8.155457e-1, 2.486352e-2, 6.836840e-6, 1.735614e00,
         1.763719e-2, 6.370440e-6, 1.968564e00, 1.524020e-2, -2.517152e-6, 1.282417e00, 8.703393e-3, 2.289292e-5,
         2.280820e00, 1.918010e-2, 4.484520e-6, 4.833473e-2, 1.641773e-4, -4.654200e-7, 5.589232e-2, -3.455092e-4,
         -7.388560e-7, 4.634443e-2, -2.658234e-5, 7.757000e-8, 8.997041e-3, 6.329728e-6, -1.939256e-9, 2.284178e-2,
         -9.941590e-5, 6.787400e-8, 4.350267e-2, -6.839749e-5, -2.714956e-7, 1.348204e-2, 1.091504e-5, 6.903760e-7,
         3.106570e-2, -1.665665e-4, -1.590188e-7])
    ccsel = reshape(ccsel, (17, 3))

    # Constants of the arguments of the short-period perturbations.
    dcargs = array(
        [5.0974222e0, -7.8604195454652e2, 3.9584962e0, -5.7533848094674e2, 1.6338070e0, -1.1506769618935e3, 2.5487111e0,
         -3.9302097727326e2, 4.9255514e0, -5.8849265665348e2, 1.3363463e0, -5.5076098609303e2, 1.6072053e0,
         -5.2237501616674e2, 1.3629480e0, -1.1790629318198e3, 5.5657014e0, -1.0977134971135e3, 5.0708205e0,
         -1.5774000881978e2, 3.9318944e0, 5.2963464780000e1, 4.8989497e0, 3.9809289073258e1, 1.3097446e0,
         7.7540959633708e1, 3.5147141e0, 7.9618578146517e1, 3.5413158e0, -5.4868336758022e2])
    dcargs = reshape(dcargs, (15, 2))

    # Amplitudes ccamps(n,k) of the short-period perturbations.
    ccamps = array(
        [-2.279594e-5, 1.407414e-5, 8.273188e-6, 1.340565e-5, -2.490817e-7, -3.494537e-5, 2.860401e-7, 1.289448e-7,
         1.627237e-5, -1.823138e-7, 6.593466e-7, 1.322572e-5, 9.258695e-6, -4.674248e-7, -3.646275e-7, 1.140767e-5,
         -2.049792e-5, -4.747930e-6, -2.638763e-6, -1.245408e-7, 9.516893e-6, -2.748894e-6, -1.319381e-6, -4.549908e-6,
         -1.864821e-7, 7.310990e-6, -1.924710e-6, -8.772849e-7, -3.334143e-6, -1.745256e-7, -2.603449e-6, 7.359472e-6,
         3.168357e-6, 1.119056e-6, -1.655307e-7, -3.228859e-6, 1.308997e-7, 1.013137e-7, 2.403899e-6, -3.736225e-7,
         3.442177e-7, 2.671323e-6, 1.832858e-6, -2.394688e-7, -3.478444e-7, 8.702406e-6, -8.421214e-6, -1.372341e-6,
         -1.455234e-6, -4.998479e-8, -1.488378e-6, -1.251789e-5, 5.226868e-7, -2.049301e-7, 0.e0, -8.043059e-6,
         -2.991300e-6, 1.473654e-7, -3.154542e-7, 0.e0, 3.699128e-6, -3.316126e-6, 2.901257e-7, 3.407826e-7, 0.e0,
         2.550120e-6, -1.241123e-6, 9.901116e-8, 2.210482e-7, 0.e0, -6.351059e-7, 2.341650e-6, 1.061492e-6, 2.878231e-7,
         0.e0])
    ccamps = reshape(ccamps, (15, 5))

    # Constants csec3 and ccsec(n,k) of the secular perturbations in longitude.
    ccsec3 = -7.757020e-8
    ccsec = array(
        [1.289600e-6, 5.550147e-1, 2.076942e00, 3.102810e-5, 4.035027e00, 3.525565e-1, 9.124190e-6, 9.990265e-1,
         2.622706e00, 9.793240e-7, 5.508259e00, 1.559103e01])
    ccsec = reshape(ccsec, (4, 3))

    # Sidereal rates.
    dcsld = 1.990987e-7  # sidereal rate in longitude
    ccsgd = 1.990969e-7  # sidereal rate in mean anomaly

    # Constants used in the calculation of the lunar contribution.
    cckm = 3.122140e-5
    ccmld = 2.661699e-6
    ccfdi = 2.399485e-7

    # Constants dcargm(i,k) of the arguments of the perturbations of the motion
    # of the moon.
    dcargm = array([5.1679830e0, 8.3286911095275e3, 5.4913150e0, -7.2140632838100e3, 5.9598530e0, 1.5542754389685e4])
    dcargm = reshape(dcargm, (3, 2))

    # Amplitudes ccampm(n,k) of the perturbations of the moon.
    ccampm = array(
        [1.097594e-1, 2.896773e-7, 5.450474e-2, 1.438491e-7, -2.223581e-2, 5.083103e-8, 1.002548e-2, -2.291823e-8,
         1.148966e-2, 5.658888e-8, 8.249439e-3, 4.063015e-8])
    ccampm = reshape(ccampm, (3, 4))

    # ccpamv(k)=a*m*dl,dt (planets), dc1mme=1-mass(earth+moon)
    ccpamv = array([8.326827e-11, 1.843484e-11, 1.988712e-12, 1.881276e-12])
    dc1mme = 0.99999696e0

    # Time arguments.
    dt = (dje - dcto) / dcjul
    tvec = array([1e0, dt, dt * dt])

    # Values of all elements for the instant(aneous?) dje.
    temp = (transpose(dot(transpose(tvec), transpose(dcfel)))) % dc2pi
    dml = temp[0]
    forbel = temp[1:8]
    g = forbel[0]  # old fortran equivalence

    deps = (tvec * dceps).sum() % dc2pi
    sorbel = (transpose(dot(transpose(tvec), transpose(ccsel)))) % dc2pi
    e = sorbel[0]  # old fortran equivalence

    # Secular perturbations in longitude.
    dummy = cos(2.0)
    sn = sin((transpose(dot(transpose(tvec[0:2]), transpose(ccsec[:, 1:3])))) % cc2pi)

    # Periodic perturbations of the emb (earth-moon barycenter).
    pertl = (ccsec[:, 0] * sn).sum() + dt * ccsec3 * sn[2]
    pertld = 0.0
    pertr = 0.0
    pertrd = 0.0
    for k in range(0, 15):
        a = (dcargs[k, 0] + dt * dcargs[k, 1]) % dc2pi
        cosa = cos(a)
        sina = sin(a)
        pertl = pertl + ccamps[k, 0] * cosa + ccamps[k, 1] * sina
        pertr = pertr + ccamps[k, 2] * cosa + ccamps[k, 3] * sina
        if k < 11:
            pertld = pertld + (ccamps[k, 1] * cosa - ccamps[k, 0] * sina) * ccamps[k, 4]
            pertrd = pertrd + (ccamps[k, 3] * cosa - ccamps[k, 2] * sina) * ccamps[k, 4]

    # Elliptic part of the motion of the emb.
    phi = (e * e / 4e0) * (((8e0 / e) - e) * sin(g) + 5 * sin(2 * g) + (13 / 3e0) * e * sin(3 * g))
    f = g + phi
    sinf = sin(f)
    cosf = cos(f)
    dpsi = (dc1 - e * e) / (dc1 + e * cosf
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值