特征工程——特征构造

特征工程概述

这里写图片描述

一、特征工程概述

特征工程 = 数据准备(for 数据挖掘)
数据清洗、转换
1.1 特征工程主要内容
1.2 特征工程重要性
好数据>多数据>好算法
    数据和特征决定了模型预测的上限,而算法只是逼这个上限而已
应用机器学习基本上就是特征工程

二、特征构造的常用方法

文本数据特征提取(类似茎叶图)
图像数据特征提取
用户行为特征提取
2.1 不同类型数据的特征提取方法
用户特征 RFM 行为特征提取:
在客户关系管理(CRM),有三个刻画用户的神奇指标
最近一次消费间隔时长(Recency)
消费频率(Frequency)
消费金额(Monetary)
代码演示:
import matplotlib.pyplot as plt
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = 'all'

trade = pd.read_csv(./data/transaction.txt)    #导入交易数据类型
trad.info()
trad.head()

trade['Date'] = pd.to_datetime(trade['Date'])  #把date数据转换成日期类型
trade.info()
trade.head()

RFM = trade.groupby('CardID').egg(             #汇总生成 RFM 特征
    {'Date':'max','CardID':'count','Amount':'sum'})
RFM.head()
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SongpingWang

你的鼓励是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值