协方差矩阵—Hessian矩阵—正定矩阵

一、基本概念

1.1 协方差矩阵 及推导

在统计学中用标准差描述样本数据的 “散布度” 公式中之所以除以 n-1 而不是 n,
是因为这样使我们以较少的样本集更好的逼近总体标准差。即统计学上所谓的 “无偏估计”。
关于 协方差散度 :https://blog.csdn.net/wsp_1138886114/article/details/80967843

方差 v a r ( X ) = ∑ i = 1 n ( X i − X ˉ ) ( X i − X ˉ ) n − 1 var(X) = \frac{\sum_{i=1}^n(X_i-\bar{X})(X_i-\bar{X})}{n-1} var(X)=n1i=1n(XiXˉ)(XiXˉ)

各个维度偏离其均值的程度,协方差 cov ( X , Y ) = ∑ i = 1 n ( X i − X ˉ ) ( Y i − Y ˉ ) n − 1 \text{cov}(X,Y) = \frac{\sum_{i=1}^n(X_i-\bar{X})(Y_i-\bar{Y})}{n-1} cov(X,Y)=n1i=1n(XiXˉ)(YiYˉ)

协方差矩阵的计算:
这里写图片描述
c o v ( z ) = ( 1 2 3 4 3 4 1 2 2 3 1 4 ) j cov(z) = \begin{pmatrix} 1 & 2 &3 &4 \\ 3&4 &1 & 2\\ 2& 3& 1& 4 \end{pmatrix}j cov(z)=132243311424j

1.2 Hessian矩阵

Hessian矩阵定义:
一元函数 f ( x ) f(x) f(x) x = x ( 0 ) x = x^{(0)} x=x(0) 点的某个领域内具有任意阶导数,则 f ( x ) f(x) f(x) x ( 0 ) x^{(0)} x(0) 点的泰勒展开式为:
f ( x ) = f ( x ( 0 ) ) + f ′ ( x ( 0 ) ) Δ x + 1 2 f ′ ′ ( x ( 0 ) ) ( Δ x 2 ) + ⋯ (1) f(x) = f(x^{(0)}) + f'(x^{(0)})\Delta x + \frac{1}{2} f''(x^{(0)})(\Delta x^2)+\cdots \tag{1} f(x)=f(x(0))+f(x(0))Δx+21f(x(0))(Δx2)+(1)

其中: Δ x = x − x ( 0 ) , Δ x 2 = ( x − x ( 0 ) ) 2 \Delta x = x-x^{(0)},\Delta x^2 = (x-x^{(0)})^2 Δx=xx(0),Δx2=(xx(0))2

二元函数 f ( x 1 , x 2 ) f(x_1,x_2) f(x1,x2) X ( 0 ) ( x 1 ( 0 ) , x 2 ( 0 ) ) X^{(0)}(x^{(0)}_1,x^{(0)}_2) X(0)(x1(0),x2(0))点处的泰勒展开式为:
1 2 [ ∂ 2 f ∂ 2 x 1 2 ∣ x ( 0 ) Δ x 1 2 + 2 ∂ 2 f ∂ x 1 ∂ x 2 ∣ x ( 0 ) Δ x 1 Δ x 2 + ∂ 2 f ∂ 2 x 2 2 ∣ x ( 0 ) Δ x 2 2 ] + ⋯ (2) \frac{1}{2}\left [ \frac{\partial^2f}{\partial^2x_1^2}|_{x^{(0)}} \Delta x_1^2 + 2\frac{\partial^2f}{\partial x_1\partial x_2}|_{x^{(0)}}\Delta x_1\Delta x_2+\frac{\partial^2f}{\partial^2x_2^2}|_{x^{(0)}} \Delta x_2^2\right ]+\cdots \tag{2} 21[2x122fx(0)Δx12+2x1x22fx(0)Δx1Δx2+2x222fx(0)Δx22]+(2)

其中: Δ x 1 = x 1 − x 1 ( 0 ) , Δ x 2 = x 2 − x 2 ( 0 ) \Delta x_1 = x_1-x^{(0)}_1,\Delta x_2 = x_2-x_2^{(0)} Δx1=x1x1(0),Δx2=x2x2(0)

将上述(2)展开式写成矩阵形式,则有:
f ( X ) = f ( X ( 0 ) ) + ( ∂ f ∂ x 1 , ∂ f ∂ x 2 ) x ( 0 ) ( Δ x 1 Δ x 2 ) + 1 2 ( Δ x 1 , Δ x 2 ) { ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 } ∣ x ( 0 ) ( Δ x 1 Δ x 2 ) + ⋯ (3) f(X) = f(X^{(0)})+\left ( \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2} \right )_{x^{(0)}}\begin{pmatrix} \Delta x_1\\ \Delta x_2 \end{pmatrix}+\frac{1}{2}(\Delta x_1,\Delta x_2)\begin{Bmatrix} \frac{\partial^2f}{\partial x_1^2} & \frac{\partial^2f}{\partial x_1 \partial x_2}\\ \frac{\partial^2f}{\partial x_2 \partial x_1}& \frac{\partial^2f}{\partial x_2^2} \end{Bmatrix}|_{x^{(0)}} \begin{pmatrix} \Delta x_1\\ \Delta x_2 \end{pmatrix} +\cdots \tag{3} f(X)=f(X(0))+(x1f,x2f)x(0)(Δx1Δx2)+21(Δx1,Δx2){x122fx2x12fx1x22fx222f}x(0)(Δx1Δx2)+(3)

即为:
f ( X ) = f ( X ( 0 ) ) + ∇ f ( X ( 0 ) ) T + 1 2 Δ x T G ( X ( 0 ) ) Δ X + ⋯ (4) f(X) = f(X^{(0)})+\nabla f(X^{(0)})^T + \frac{1}{2} \Delta x^T G(X^{(0)}) \Delta X +\cdots \tag{4} f(X)=f(X(0))+f(X(0))T+21ΔxTG(X(0))ΔX+(4)

其中:
G ( X ( 0 ) ) = { ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 } ∣ x ( 0 ) ,    Δ X = ( Δ x 1 Δ x 2 ) G(X^{(0)}) = \begin{Bmatrix} \frac{\partial^2f}{\partial x_1^2} & \frac{\partial^2f}{\partial x_1 \partial x_2}\\ \frac{\partial^2f}{\partial x_2 \partial x_1}& \frac{\partial^2f}{\partial x_2^2} \end{Bmatrix}|_{x^{(0)}}, ~~\Delta X = \begin{pmatrix} \Delta x_1\\ \Delta x_2 \end{pmatrix} G(X(0))={x122fx2x12fx1x22fx222f}x(0),  ΔX=(Δx1Δx2)

G ( X ( 0 ) ) G(X^{(0)}) G(X(0)) f ( x 1 , x 2 ) f(x_1,x_2) f(x1,x2) X ( 0 ) X^{(0)} X(0) 点处的Hessian矩阵。它是由函数 f ( x 1 , x 2 ) f(x_1,x_2) f(x1,x2) X ( 0 ) X^{(0)} X(0)点处的二阶偏导数所组成的方阵。我们一般将其表示为:

H ( f ) = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ⋯ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ⋯ ∂ 2 f ∂ x 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x n ∂ x 2 ⋯ ∂ 2 f ∂ x n 2 ] H(f) = \begin{bmatrix} \frac{\partial^2f}{\partial x_1^2} & \frac{\partial^2f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2f}{\partial x_1 \partial x_n} \\ \frac{\partial^2f}{\partial x_2 \partial x_1} & \frac{\partial^2f}{\partial x_2^2} & \cdots & \frac{\partial^2f}{\partial x_2 \partial x_n}\\ \vdots & \vdots & \ddots &\vdots \\ \frac{\partial^2f}{\partial x_n \partial x_1} & \frac{\partial^2f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2f}{\partial x_n^2} \end{bmatrix} H(f)=x122fx2x12fxnx12fx1x22fx222fxnx22fx1xn2fx2xn2fxn22f

简写成: Q H e s s i a n = [ I x x I x y I y x I y y ] \mathbf{Q_{Hessian}} = \begin{bmatrix} I_{xx} & I_{xy}\\ I_{yx} & I_{yy} \end{bmatrix} QHessian=[IxxIyxIxyIyy]
这里写图片描述

1.3 Hessian矩阵 示例

这里写图片描述

1.3 正定矩阵定义及性质

在线性代数中,正定矩阵(positive definite matrix)简称正定阵。
定义:A是n阶方阵,如果对于任何非零向量x都有 x T A x > 0 x^TAx>0 xTAx>0就称A正定矩阵。
这里写图片描述

1.4 正定矩阵 示例

这里写图片描述

  • 7
    点赞
  • 61
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SongpingWang

你的鼓励是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值