微积分的前世今生

参考链接: 你也能懂的微积分.
微积分,顾名思义,简单来说可以分为微分和积分,下面先说说积分。
简单来说,积分是用来求面积的,毕竟积分的“积”和面积的“积”是同一个字,而“分”可以理解为方法,所以积分就是用来求面积的。参看百度百科的定义,也是这个意思。

对于规则的图形,譬如三角形,矩形,平行四边形我们有确定的计算公式。

1.穷竭法求面积
对于不规则的图形应该如何计算其面积,譬如下面这个图形,直线截断抛物线后的上方闭合后的面积。

对于这个问题,古希腊哲学家阿基米德用的是穷竭法,即在抛物线里面做三角形,当三角形越来越多,其面积之和越接近于我们想要求的面积。当然三角形不是随便画的,而是切线与抛物线的切点。
通过几何推理我们可以发现每次新画的三角形的面积都是上一轮三角形面积的1/4。即:
2个绿色三角形的面积之和刚好是1个蓝色三角形面积的1/4;
4个黄色的三角形的面积之和刚好是2个绿色三角形的1/4,即1个蓝色三角形面积的1/16,也就是(1/4)²…………以此类推。

大弓形的面积S就可以这样表示:S=△ABC+(1/4)△ABC+(1/4)²△ABC +(1/4)³△ABC……
阿基米德计算了几项,直觉告诉他这个结果在不断地逼近(4/3)△ABC,也就是说你用的三角形越多,面积S就越接近(4/3)△ABC。于是阿基米德就猜测:如果我把无穷多个三角形的面积都加起来,这个结果应该刚好等于(4/3)△ABC。数学需要的是严格的证明,然后阿基米德就给出了证明。他证明如果面积S大于(4/3)△ABC会出现矛盾,再证明如果它小于(4/3)△ABC也会出现矛盾,所以这个面积S就只能等于(4/3)△ABC,证毕。就这样,阿基米德就严格地求出了抛物线和直线围成的弓形的面积等于△ABC的4/3,他使用的这种方法被称为“穷竭法”。

2.无限逼近求面积
还是以抛物线y=x²为例,我们来具体算一算这条抛物线在0到1之间与x轴围成的面积是多少。

我们假设0到1之间被平均分成了n份,那么每一份的宽度就是1/n。而矩形的高度就是函数的纵坐标的值,纵坐标可以通过y=x²很容易算出来。于是,我们就知道,第1个矩形的高度为(1/n)²,第2个为(2/n)²,第3个为(3/n)²……
有了宽和高,把它们乘起来就是矩形的面积。于是,所有矩形的面积之和S就可以写成这样:

计算过程你得知道平方和公式:

于是,我们就得到了n个矩形面积之和的表达式:

因为n是矩形的个数,n越大,矩形的数量就越多,那么这些矩形的面积之和就越接近曲线围成的面积。
同时,如果n是无穷大,那么这个表达式的后两项1/2n和1/6n²就应该无限趋近于0,或者说等于无穷小,也就可以扔掉了。
于是,当n趋向于无穷大的时候,面积S就只剩下第一项1/3。所以,我们就把抛物线y=x²与x轴在0到1之间围成的面积S算出来了,结果不多不少,就等于1/3。

3.穷竭法和无限逼近求面积的对比
使用穷竭法求面积,比如为了得到4/3△ABC,阿基米德就去证明如果它大于4/3会出现矛盾,小于4/3也会出现矛盾,所以你就必须等于4/3。这是非常严密的,虽然操作上麻烦了点,但是逻辑上无懈可击。
到了17世纪,我们得到了n个矩形的面积公式:

当n趋向于无穷大的时候,面积上矩形无限于趋近我们所以求得曲形的面积,同时1/2n和1/6n²两个分数分母趋向于无穷大,这个数值就无限趋近于0,也就可以舍弃。这样的思路让计算简单了很多,可是却失去了严谨性。归根结底,还是人们对于“无限趋近”这个定义模糊不清导致的。

4.初见积分以及对积分的初步定义
积分这个词当初被造出来,就是用来表示“由无数个无穷小的面积组成的面积S”。
如下图所示,如果一条曲线y=f(x)和x轴在a和b之间围成的面积为S,那么,我们就可以这样表示这部分面积S:

在上面讲到,抛物线y=x²与x轴在0到1之间围成的面积是1/3。代入进去上面的式子我们就可以这样写:

5.斜率以及微分的引入
我们都知道一次函数通过两点可以确定该一次函数的斜率,即倾斜角度,斜率越大,倾斜角度越大。这个斜率刚好就是这条直线和x轴夹角θ的正切值tanθ,即:tanθ=Δy/Δx。

直线好说,因为直线只有一个斜率,各个点的倾斜角度都是一样的。而曲线就不同了,曲线每个点的倾斜角度都不一样,所以我们只能通过切线来表示某个点的倾斜角度,那么切线要怎么确定呢,传统上我们可以这样定义切线:先随便画一个直线,让这条直线与曲线有两个交点,这样的直线叫割线(仿佛把曲线“割断”了,如下图蓝色的AB)。然后,我们让B点沿着曲线慢慢向A点靠近,直观上,等到B点和A点重合之后,割线AB就变成了曲线在A点的切线。

但是它在逻辑上会有一点问题:当B点向A点移时,它是什么时候从割线变成切线的?
重合的时候么?如果B点和A点重合,那就最后只剩下一个点了,我们知道“两点确定一条直线”,一个点怎么能确定一条直线呢?但是,如果B点和A点不重合的话,那么这就仍然是一条割线而不是切线啊。要解释这个问题,就涉及到上面第二点提到的用无限个矩形无限趋近曲形面积的思想了,也就是说,A、B两点必须无限靠近但又不能重合,这样它们的距离就无限接近0但又不等于0。

我们上面说了,直线的斜率等于在直线上两点的纵坐标之差Δy和横坐标之差Δx的比值,即Δy/Δx。
而切线是当曲线上A、B两点相隔无穷小时确定的直线,那么切线的斜率依然可以写成Δy/Δx,只不过这时Δx和Δy都无限趋近于0。
莱布尼茨就给这两个趋近于0却又不等于0的Δx和Δy重新取了一个名字:dx和dy,并把它们称为“微分”。

也就是说,对莱布尼茨而言,dx这个微分就是当Δx趋向于0时的无穷小量,dy也一样。虽然dx和dy都是无穷小,但是它们的比值dy/dx确是一个有限的数(所以这时候你就不能把无穷小dx当成0了,否则还怎么当除数?),这就是该点切线的斜率,这样一切似乎就都解释得通了。

6.导(函)数的引入
显然,曲线上的任何一点都有一个斜率值跟它对应,两个量之间存在一种对应关系,对于这种对应关系,我们可以用函数来表示。现在我们是给定一个点(假设横坐标为x),就有一个斜率dy/dx跟它对应。显然,这也是个函数,这个函数就叫导函数,简称导数。
在中学的时候,我们通常在函数f(x)的右上角加上一撇表示这个函数的导数,即:

下面还是用二次函数f(x)=x²来举例如何求导数,下图为f(x)=x²的函数图像:

我们假设曲线上有一个横坐标为x的点,它的纵坐标为x²;跟这个点距离无穷小的点的横坐标就是x+dx,由于这个点也在曲线f(x)=x²上,所以它的纵坐标就是(x+dx)²,即:

然后,我们用这两个点的纵坐标之差f(x+dx)-f(x)除以横坐标之差(x+dx)-x就能算出x点的切线斜率。因为这个x是任意取的,所以得到的结果就是任意点的切线斜率,那么这就是导数了:

这个dx就是我们前面定义的无穷小量,它无限接近于0却又不等于0,那么导数上下同时除以dx就成了:

这个式子看起来简洁了一些,但是后面还是拖了一个小尾巴dx,但dx是一个无限趋向于0又不等于0的数,把它去掉之后,最终的导数就可以简单地写成:

但是这逻辑上就很奇怪了:一个无限趋近于0的无穷小量dx到底是不是0?如果是0,那么为什么可以让分子分母同时除以它来约分;如果不是0,那又为什么可以把它随意舍弃?这个问题在前面讲解无限趋近的方法求面积的时候出现过一次,这次在导数这里又出现了一次。

7.导(函)数的意义
导数反映的是一个量变化快慢的程度,这其实就是一种广义的“速度”。
有了导数,我们就能轻而易举地求一条曲线的极值(极大值或极小值),为什么?因为只要导数不为0,曲线在这里就是在上升(大于0)或者下降(小于0)的,只有导数等于0的地方,才有可能是一个极值点,具体例子如下图。

所以在中学阶段,对于导(函)数的应用主要用来求一个函数在某个区间的上升下降状态,以及在某个区间里面的最大值,最小值。虽然只是用于应试,但是现实生活的应用源于理论,譬如实际生活中可以用来求利润的最大值,铁球在空中的运动状态以及最高点等等,对于象牙塔的学生而言,只有把理论知识运用的炉火纯青之后,日后在生活工作中才能对具体的问题更加的游刃有余,毕竟磨刀不误砍柴工。

8.微积分的统一
微积分的全称是微积分基本定理又叫牛顿-莱布尼茨公式。先说结论,“积分和微分是互逆的”,即“求面积(积分)和求导(微分)是一对互逆运算”。

用物理学中的速度(v),时间(t),位移(x)描述上面这段话会比较容易理解。
通过积分运算,我们能从瞬时速度求出位移;通过微分运算,我们能从位移求出瞬时速度。

用物理中的速度(v)-时间(t)图像解释积分会比较形象,见下图:

首先存在这样一个速度v和时间t关系的函数v(t),我想求它在时间t1-t2这段时间走过的位移,即上图中的黄色面积,我把时间分成很多很多小段,然后求每个小段的面积,最后把所有的小段加起来,这个过程就是求积分,即通过瞬时速度,求出了t1-t2段的总位移。

用物理中的位移(x)-时间(t)图像解释微分会比较形象,见下图:

首先存在一个位移x和时间t关系的函数x(t),对这个函数求导,每对应一个时间t,可以得到对应这个时间t的导数,我们都知道位移/时间得到的是平均速度,当这个时间无限趋近于零的时候,此时得到的平均速度就是瞬时速度,这个过程就是求微分/求导,即通过总位移得到了瞬时速度。

9.原函数、函数、导(函)数
以最开始求曲线围成的面积为例。我们要求抛物线y=x²与x轴在0到1之间围成面积的:如果用n个矩形去逼近,每个矩形的底就是1/n,n个矩形的面积之和就是这样:

图1
图2

当n趋向于无穷大的时候,后面两项就等于无穷小,然后结果就只剩下第一项1/3。用这种方法,面对不同的曲线就得有不同的求和公式,最后还得保证相关项可以变成无穷小丢掉。所以,这种方法的复杂度和局限性都非常大,无法推广。
牛顿和莱布尼茨发现了“积分和微分是互逆运算”之后,这一切就改变了。因为我们有另一种选择:积分之路如果不好走,我们可以走微分啊。
前面讲微分的时候,我们计算过f(x)=x²的导数,最终的结果是这样的:

我们完全可以根据f(x)=2x反推出原来的函数是f(x)=x²+c。于是,我们就把求导之前原来的函数f(x)=x²+c称为的f(x)=2x的原函数。
速度v通过反向求导/微分可以得到位移s,即s是v的原函数。
积分是函数围成面积的过程,速度v通过积分可以得到位移s,在v-t图像里速度v围成的面积就是位移s;
微分是求导的过程,对位移s求一次导数就能够得到速度v。
综上所述:求面积可以通过原函数来实现。

求函数f(x)=x²与x轴在0到1之间围成的面积?
一次求导得到导(函)数f‘(x):f‘(x)=2x
反向求导得到原函数F(x):

因为原函数有积分的效果,所以此时要求f(x)=x²与x轴在0到1之间围成的面积:

这样得到的结果和之前用逐次逼近得到的答案一样。
有了这样的铺垫,微积分基本定理(牛顿-莱布尼茨公式)就非常容易理解了:如果函数f(x)在区间a到b之间连续(简单理解就是曲线没有断),并且存在原函数F(x),那么就有:

10.极限的定义
微积分基本定理的核心思想就是用求原函数的方式来解决求面积的问题,我们自然就要研究各种常见函数的求导和求原函数的方法。但此时的微积分还不牢靠,因为莱布尼茨把dx视为一个无穷小量,为什么你有时候可以把它当除数约掉(认为它不为0),有时候又随意把它舍弃(认为它等于0)。
为了解决掉这个招人烦的小家伙,柯西对极限做了一个新的定义:“当一个变量相继的值无限地趋近某个固定值的时候,如果它同这个固定值之间的差可以随意地小,那么这个固定值就被称为它的极限。”
怎么理解这个绕口的话呢,我觉得可以用一个司法上的词来概括,那即是“疑罪从无”,即我不需要证明我没嘴,而把这个问题抛给你,我只要能够推翻你证明我有罪的结论即可。即dx这个无限趋近于零的数我不需要告诉你这个数具体是多少,反正存在这个数,而且这个数是无限趋近于0,而不是无限趋近于1,只要你能说出一个确定的值,不管你说的值有多小,我都可以让它跟0的差比你的更小,这种将问题抛给对方的思路将微积分的理论变得更加的严谨。
随后,魏尔斯特拉斯用数学的语言改进了柯西的这段纯文字的定义,得到了最终的,也是我们现在教材里使用的ε-δ极限定义。即:当且仅当对于任意的ε,存在一个δ>0,使得只要0<|x-a|<δ,就有|f(x)-L|<ε,那么我们就说f(x)在a点的极限为L。记做:

举个例子:对于函数f(x)=1/x。当x的取值(x>0)越来越大的时候,这个函数的值就会越来越小:
f(1)=1,
f(10)=0.1,
f(100)=0.01,
f(1000)=0.001,
…………
看得出来,当x的取值越来越大的时候,f(x)的值会越来越趋近于0。所以,函数f(x)在无穷远处的极限值应该是0,也就是说:

11.ε-δ下对于积分和微分的重建
有了ε-δ极限之后,我们就可以刷新一下我们对积分的认知了:从现在起,我们把曲线围成的面积看成是一个极限,而不再是无数个无穷小量的矩形面积之和。我们把曲线围城的面积用n个矩形来表示,分别是S1、S2、S3……,所有的面积之和为Sn。如果这个Sn的极限存在,也就是说,随便你说出一个数字ε,我都能找到一个n的范围,让Sn和A之间的差|Sn-A|小于你给定的这个数字ε。那么,A就是这个Sn的极限,Sn→A。

这样,我们的积分就成了一个由ε-δ语言精确定义的极限。这里没有那个等于0又不等于0的无穷小量,一切都清清楚楚、明明白白,没有含糊的地方,这就是第二次数学危机的终极解决之道。

有了ε-δ定义之后,我们就再不能把导数看成是两个无穷小量的比值(dy/dx),而是:把导数也看成一个极限。切线就应该被理解为割线的极限,那么切线的斜率(也就是这点的导数)自然就是割线斜率的极限,所以导数f(x)’也自然而然地成了一个极限。
由于割线的斜率就是用这两点的纵坐标之差f(x+Δx)-f(x)除以这两点的横坐标之差(x+Δx-x=Δx),而导数f(x)’是割线斜率的极限。那么,我们在割线斜率的前面加一个极限符号就可以表示导数f(x)’了:

这才是导数的真正定义,它是一个极限,而不再是两个无穷小量dy与dx的商dy/dx。也就是说,按照极限的ε-δ定义,这个导数f(x)’的真正含义是:你任意给一个ε,我都能让割线的斜率与这个值的差比你给的ε更小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值