目录
一、安全评价简介
何为安全评价,对于本专业的同学来说,可能并不陌生,就是对某一个生产、工艺流程的危险性进行一个量化的评判。可能对于现在的大部分企业来说,都是以分数的高低来判断是否安全、是否危险,在多年发展下,逐渐形成了安全检查表、专家评议法、预危险性分析、故障假设分析、危险与可操作性分析、故障树分析、事故树分析等多种分析手段,在这些不同的评价手段下,用不同的标准去衡量安全性和危险性。(安全管理网上有对上述几种常见的安全评价方法进行阐述几种常见的安全评价方法-安全管理网 (safehoo.com))
二、引入
而目前,众多公司虽每年都有具体的对应的安全评价结果,但高层领导对安全不重视、中层干部对安全监管不到位、底层员工对安全措施实施不规范,造成了众多安全事故的发生。据不完全统计,我国仅在2021年1月至8月期间,就发生了232起大大小小的安全事故,每一场事故的背后都有不安全行为的发生,其背后的原因错综复杂,包括的行业也是多种多样。本文仅对某一高端装备制造企业中的不同层级的人员进行调查,去深挖对企业安全与否的个人认知,从而分析出影响企业安全的最大因素。
三、调查问卷的设置
如下图所示,我们本次问卷共设置3个一级指标11个二级指标45个三级指标,均以0-5数字来评价高低,用以定量评估对于企业安全的认识情况。该问卷脱胎于本专业某课设,由于对于专业认知有限,可能评估标准并不尽如人意,也欢迎大家多多批评指正。
四、问卷发放与回收
五、主成分分析法介绍
主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法,主要操作步骤如下
(1)指标数据标准化;(SPSS自动执行,本文中无需标准化)
(2)指标之间相关性的判定;
(3)确定主成分个数;
(4)主成分表达;
主成分分析的好处多多,当我们有多个变量时,通过主成分分析可以得到降维处理后的若干个主成分,以这几个主成分作为新变量进行构建回归模型,亦会减少计算量。当然例如皮尔逊相关系数、灰色关联矩阵,也可以从一定程度上挑选出与某个变量相关性较强的变量,以减少计算量。
六、SPSS主成分分析(简易版)
考虑到本专业对于代码能力的局限性,且难以处理大批量数据(本次数据量级为万级),因此我首先介绍SPSS主成分分析法。
6.1 数据的导入与设定
我们在问卷做完以后,收回了800份问卷,以excel形式导出,然后要做的第一件事,就是把数据导进excel里面,可以直接读取excel,但不建议,因为顶上一行的文字可能会影响下面的数据格式,所以全选excel中的数据,复制进SPSS中,稍等一会,数据量有点大,需要缓冲时间。
然后这个时候发现,对于这些个数据顶上的命名都是系统自动命名的,那么我们就需要将其全部转化为我们对应的指标文本,但是需要注意在变量视图中,把所有的都改成数字类型哦,最后就如下啦~
看上去是不是密密麻麻的一大片文字,没关系~SPSS傻瓜式操作,丝毫不用担心处理的问题,按两下它就能给你完美解决!
6.2 信效度分析
在主成分分析之前,还有一个非常非常重要的事情需要做,就是做一下信效度分析,为啥要做这玩意?你最后得出了一个不合理的结果,倒推发现,完犊子了,一开始搞的问卷指标就不对,一点可信度和效度都没有,直接嗝屁,当然啦,也要防止一些乱填的情况,由于本问卷设置为全部必做且仅用0-5来衡量,相对来说减少了工作量。
那到底什么是信效度分析呢?信度反映的是测量结果的一致性或稳定性的指标:测量的信度越高表示测量的结果越可信。当然,信度是任何一种测量的必要条件,但不是唯一条件,因为信度与测量结果的正确与否无关。因此,只有测量值接近或等于真值时,信度高才有意义。信度有两层含义:(1)一致性:如某一组(性质、题型、目的均相同)量表的一致性高,那么用该组量表对某同质人群进行测验后,所得结果具有较强的正相关性。即一致性侧重反映不同量表反映同一现象的相似程度。(2)稳定性,指在不同的时间点用相同的量表对相同的研究对象进行测验,所得结果的相似程度。若所得结果的差异很小,则说明其稳定性高。诚然,由于影响测量结果的因素众多,两次测量的结果很难完全相同。一般而言,如果信度系数能达到0.9以上,就很理想了。按照评价对象的不同,分为内在信度和外在信度,本文主要利用内在信度,常用信度系数为Cranbach α系数和分半信度,信度系数越高反应量表的内在一致性越高。
通过“分析——刻度——可靠性分析”命令,弹出可靠性分析对话框,将45个因素导入至“项”,打开“统计”面板,勾选“项目”、“相关性”等并点击继续,模型先后选择“Alpha”和“折半”进行确定输出。
表1 克隆巴赫Alpha检验
克隆巴赫Alpha |
基于标准化项的克隆巴赫Alpha |
项数 |
0.982 |
0.987 |
45 |
表2 折半信度系数检验
克隆巴赫Alpha |
第一部分 |
值 |
0.959 |
项数 |
23a |
||
第二部分 |
值 |
0.972 |
|
项数 |
22b |
||
总项数 |
45 |
||
形态之间的相关性 |
0.931 |
||
斯皮尔曼——布朗系数 |
等长 |
0.964 |
|