文章目录
- 第一步 导入第三方库和案例数据
- 第二步 标准化数据
- 第三步 训练模型
- 第四步 计算主成分个数
- 第五步 计算主成分系数
- 第六步 计算主成分得分
- 第七步 计算综合得分
- 第八步 导出综合评价结果
- 下期预告: P y t h o n 综合评价模型(五)德尔菲法 \textcolor{RoyalBlue}{下期预告 : Python综合评价模型(五)德尔菲法} 下期预告:Python综合评价模型(五)德尔菲法
- 关注公众号“ T r i H u b 数研社”发送“ 230305 ”获取案例数据和代码 \textcolor{RoyalBlue}{关注公众号“TriHub数研社”发送“230305”获取案例数据和代码} 关注公众号“TriHub数研社”发送“230305”获取案例数据和代码
主成分分析法是通过降维把多个评价指标转化为少数几个综合指标从而对评价对象进行综合评价的方法
提取的主成分的个数一般不超过5-6个
提取的主成分的累积贡献率一般不低于80-85%
第一步 导入第三方库和案例数据
import numpy as np
import pandas as pd
from sklearn.decomposition import PCA
#按指定路径导入数据,以“地区”为索引(文件路径需按实际情况更换)
data = pd.read_excel(r'C:/Users/AROUS/Desktop/综合评价数据.xlsx', index_col = '地区')
data
第二步 标准化数据
#定义z-score标准化函数
def z_score(x):
return (x - x.mean()) / x.std()
#使用z-score标准化函数标准化数据
data_z = data.apply(z_score, 0)
data_z
第三步 训练模型
pca = PCA().fit(data_z)
第四步 计算主成分个数
方式1 按特征值计算主成分个数
#输出特征值
pca.explained_variance_
#计算特征值大于1的主成分个数
n_components = (pca.explained_variance_ > 1.0).sum()
n_components
方式2 按累积贡献率计算主成分个数
#输出方差贡献率
pca.explained_variance_ratio_
#输出累积方差贡献率
pca.explained_variance_ratio_.cumsum()
#计算累积方差贡献率大于0.8的主成分个数
n_components = np.argmax(pca.explained_variance_ratio_.cumsum() >= 0.8) + 1
n_components
第五步 计算主成分系数
#n_components参数用于设置需保留的主成分个数,默认为None(即保留全部主成分),案例保留2个主成分
pca = PCA(n_components = n_components).fit(data_z)
pca.components_
第六步 计算主成分得分
F1=0.3967×生产总值+0.2874×从业人员+0.3074×固定资产+0.4011×利用外资+0.3789×进出口额+0.3864×新品出口+0.3846×市场占有+0.2527×对外依存
F2=-0.2064×生产总值-0.5209×从业人员-0.4819×固定资产-0.0094×利用外资+0.3104×进出口额+0.1216×新品出口+0.2104×市场占有+0.5461×对外依存
col_name = ['F{}'.format(i+1) for i in range(n_components)]
pca_transform = pd.DataFrame(pca.transform(data_z), columns = col_name, index = data.index)
data = pd.concat([data, pca_transform], axis=1)
data
第七步 计算综合得分
#使用方差贡献率作为主成分权重
w = pca.explained_variance_ratio_
w
data['主成分分析法得分'] = data.iloc[:, -2:].dot(w)
data
第八步 导出综合评价结果
data.to_excel('主成分分析法综合评价结果.xlsx', index = True)