写个python小程序复习一遍K-means算法,算法本身思想很简单,下面这篇文章介绍的很详细。http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/kmeans.html
一、算法主函数
给定一个n维的向量集合points,将其划分为k个类别,采用闵氏距离作为两点之间距离的判定方法,算法参数就有三个:
1、points:向量集合
2、kcentroids:初始k个类别的质心位置的集合
3、p:闵氏距离的计算参数,1就是manhattan距离,2就是欧式距离
返回值是分好类的二维数组,行数为k,表示k个类别,每一行内的元素是int类型,表示向量数据在points中的下标,从0开始
主算法代码如下:
def alg_kmeans(points, kcentroids, p):
assert(len(points) > 1);
assert(len(kcentroids) > 1);
assert(len(points[0]) == len(kcentroids[0]));
k = len(kcentroids);
# centroids for clusters, each centroid is a vector
centroids = kcentroids;
# clusters, set of point's index
c1 = [[] for row in range(k)];
c2 = [[] for row in range(k)];
change = True;
while change:
change = False;
# cluster once
c2 = PointstoCluster(points, centroids, p);
# if cluster change
change = (cmp(c1,c2) != 0);
# if not change, do again
if change:
c1 = c2;
# recalculate cluster centroids
centroids = RecalculateCentroids(points, centroids, c2);
return c2;
主循环中每一轮计算,都会根据k个质心计算出分类的数据集合,将其保存在主算法中定义的二维数组c2中,c1为上一轮计算结果,c1与c2相同则表示算法结束。
二、计算函数
每一轮计算的函数参数与主函数相同,这是第二个参数质心集合是每一轮的计算结果,代码如下:
def PointstoCluster(points, kcentroids, p):
assert(len(points) > 1);
assert(len(kcentroids) > 1);
assert(len(points[0]) == len(kcentroids[0]));
k = len(kcentroids);
clusters = [[] for i in range(k)];
for i in range(len(points)):
# cal distance to each centroid
mindis = sys.float_info.max;
point = points[i];
clusteridx = -1;
for j in range(0, k):
dis = dis_minkowski(point, kcentroids[j], p);
if dis < mindis:
clusteridx = j;
mindis = dis;
clusters[clusteridx].append(i);
return clusters;
函数遍历所有向量数据,每一个向量均计算与各个质心之间的距离,取最近距离质心的类别作为其归属分类。
三、质心计算函数
每一轮计算过后,都要重新计算每个分类的质心,函数需要参数参数:
1、points:同上
2、k:类别数目
3、clusters:PointstoCluster的返回值
代码如下:
def RecalculateCentroids(points, k, clusters):
assert(len(points) > 1);
assert(k > 1);
dimention = len(points[0]);
centroids = [[0 for d in range(dimention)] for row in range(k)];
for i in range(k):
if len(clusters[i]) == 0:
continue;
for d in range(0, dimention):
centroids[i][d] = 0;
for pidx in clusters[i]:
centroids[i][d] += points[pidx][d];
centroids[i][d] /= len(clusters[i]);
return centroids;
算法较为简单,对于某一个类别内的所有数据,取其内所有向量,对每个维度取平均值。
四、效果
为验证效果,另外写了一个壳程序,维度取2(平面),p取2(欧式距离),随机生成1000个点,分为5类,结果图示如下。
代码的github地址:https://github.com/wsxwang/ML-practise.git