深度优先搜索(Depth-First Search, DFS)和广度优先搜索(Breadth-First Search, BFS)是图和树结构中常用的遍历算法。两者适用于不同的场景。
深度优先搜索
优点
较低的空间复杂度(只需保存当前路径),能找到从起点到终点的所有路径。
缺点
对于无穷或非常大的搜索空间,可能会产生栈溢出或者无限循环。
适用场景
- 路径查找:在需要找到从起点到终点的所有可能路径的场景中,DFS非常有效。比如在迷宫求解问题中,DFS可以找到从起点到终点的所有可能路径。
- 深度优先策略:在一些需要确保走到叶子节点的任务中,比如在游戏中的策略搜索和分支定界法中,DFS有助于快速深入到决策树的深处。
- 环路检测:记录每个遍历过的节点的父节点,若一个节点被再次遍历且父节点不同,则说明有环。
广度优先搜索
优点
能找到最短路径(在无权图中),更合适逐层展开的搜索任务。
缺点
较高的空间复杂度(需要保存所有层次节点信息),当搜索空间很大时可能会消耗大量内存。
适用场景
- 最短路径查找:在无权图中,BFS总是能找到从起点到终点的最短路径。比如在找无权图中的最短路径问题,如棋盘上最少的步数、社交网络中的两个人之间的最短关系链。
- 层次遍历:在需要层次遍历树或图的场景中,BFS是非常合适的选择,比如在二叉树的层次遍历中。
根据具体问题特点选择合适的算法。